Sol-Gel Synthesis of N-Doped Mesoporous TiO2 with High Crystallinity and High Visible Light Photocatalytic Activity

Abstract:

Article Preview

N-doped mesoporous TiO2 with high surface area and crystallinity were synthesized by sol-gel method using polyacrylamide (PAM) and polyethylene glycol (PEG) as the complex templates. The resulting materials were characterized by XRD, TEM, N2 adsorption-desorption, and UV-Vis spectroscopy. It is found that when the weight ratio of PAM and PEG is 1:4, the sample, prepared at 600 °C in nitrogen and at 500 °C in air, is anatase phase and has high surface area and crystallinity. The particle size and pore size of the sample are about 10 nm and 17 nm respectively. Compared with that of the undoped mesoporous TiO2, the absorption band edges of N-doped samples exhibit an evident red-shift. The results of the photocatalytic degradation of methyl orange (MO) show that N-doped sample appears to have higher photocatalytic activity under visible light than undoped sample.

Info:

Periodical:

Edited by:

Xianghua Liu, Zhenhua Bai, Yuanhua Shuang, Cunlong Zhou and Jian Shao

Pages:

857-861

Citation:

X. L. Guo et al., "Sol-Gel Synthesis of N-Doped Mesoporous TiO2 with High Crystallinity and High Visible Light Photocatalytic Activity", Applied Mechanics and Materials, Vols. 217-219, pp. 857-861, 2012

Online since:

November 2012

Export:

Price:

$38.00

[1] Y. Wan, H. Yang, D. Zhao: Acc Chem Res, 2006, 39(7): 423-432.

[2] Y. Liu, M.S. Johann, M.F. Johann, et al: ACS Nano, 2010, 4(9): 5373–5381.

[3] B. Rudina, A. Pierre, L. Lise: J Phys Chem C, 2010, 114(5): 2039–(2048).

[4] D. P. Serrano, G. Calleja, R. Sanz, et al: J Mater Chem, 2007, 17(12): 1178-1187.

[5] G. Liang, J. Xu, X. Shen, et al: J Opto Electron Adv Mater, 2010, 12(8): 1758-1764.

[6] J. Lee, M.C. Orilall, S. Warren, et al: Nature Mater, 2008, 7: 222-228.

[7] R. Asahi, T. Morikawa, T. Ohwaki, et al: Science, 2001, 293: 269-271.

[8] G. Liu, H.G. Yang, X. Wang, et al: J Am Chem Soc, 2009, 131(36): 12868–12869.

[9] E. Vinodkumar, K. Seerym, S.J. Hinder, et al: Chem Mater, 2010, 22(13): 3843–3853.

[10] G.H. Tian, H.G. Fu, L.Q. Jing, et al: J Phys Chem C, 2008, 112(8): 3083-3089.

[11] C.Y. Jimmy, L. Zhang, J. Yu: Chem Mater, 2002, 14: 4647-4653.

[12] W.J. Ren, Z.H. Ai, F.L. Jia, et al: Appl Catal B: Environ, 2007, 69(3-4): 138-144.

[13] Y. Zhang, J. Lin, J. Wang, et al: Chem Mater, 2006, 18(12): 2917-2923.

[14] X.J. Wang, D.D. Hu, J.X. Yang: Chem Mater, 2007, 19(10): 2610-2621.