Design of Optimum Torsionally Flexible PropRotors for Tilt-Body MAVs

Abstract:

Article Preview

This paper presents a methodology to design the optimum proprotor for tilt-body micro-air-vehicles (TB-MAV) with efficient global propulsion system and long flight endurance in both cruise and hover modes. The TB-MAV developed at ISAE, which is called MAVion, was used as a baseline in the design process. To acquire maximum performance of TB-MAV’s global propulsion system, an efficient optimization process of the proprotor propulsion system was carried out. The optimization process consists of two-step inverse design methods. The first step determines the optimal operating conditions in terms of power and rotational speed of proprotor and the second step designs the optimal blade geometry in terms of twist angle distribution. The optimal blade twist distribution along the blade was computed using the Glauert’s strip theory for minimum energy loss condition. Meanwhile, the optimal operating conditions were determined by the motor outputs corresponding to high motor efficiency. A comparison of performance in terms of total efficiency and flight endurance between the optimized flexible proprotor, the optimized rigid proprotor, optimized propeller and optimized rotor is presented.

Info:

Periodical:

Main Theme:

Edited by:

R. Varatharajoo, E. J. Abdullah, D. L. Majid, F. I. Romli, A. S. Mohd Rafie and K. A. Ahmad

Pages:

281-286

DOI:

10.4028/www.scientific.net/AMM.225.281

Citation:

F. Zawawi et al., "Design of Optimum Torsionally Flexible PropRotors for Tilt-Body MAVs", Applied Mechanics and Materials, Vol. 225, pp. 281-286, 2012

Online since:

November 2012

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.