Effect of Geometric Nonlinear Behaviour of a Guyed Transmission Tower under Downburst Loading


Article Preview

Downburst winds, which are a source of extreme wind loading and are referred to as high intensity wind (HIW) loads, have caused numerous transmission tower failures around the world. A previous investigation was conducted to study the performance of a transmission tower under downburst wind loading, where the behaviour of the tower was limited to a linear response. In the current study, a nonlinear frame element is used to assess the performance of the tower under downburst wind loading. The behaviour is studied using downburst wind field data obtained from a computational fluid dynamics (CFD) model. In order to assess the geometric nonlinear behaviour of the tower, the results are compared to a previous linear analysis for a number of critical configurations of a downburst. The nonlinear analysis predicted that peak axial loads in certain members can be up to 34% larger than those predicted by the linear analysis.



Edited by:

Chunliang Zhang and Paul P. Lin




C. Ladubec et al., "Effect of Geometric Nonlinear Behaviour of a Guyed Transmission Tower under Downburst Loading", Applied Mechanics and Materials, Vols. 226-228, pp. 1240-1249, 2012

Online since:

November 2012




[1] Letchford, C. W., Mans, C., and Chay, M. T. (2002). Thunderstorms-their importance in wind engineering (a case for the next generation wind tunnel)., Journal of Wind Engineering and Industrial Aerodynamics, 90, pp.1415-1433.

DOI: https://doi.org/10.1016/s0167-6105(02)00262-3

[2] Fujita, T. T. (1981). Tornadoes and downbursts in the context of generalized planetary scales., Journal of Atmospheric Science, Vol. 38, pp.1511-1534.

[3] Savory, E., Parke, G., Zeinoddini, M., Toy, N., and Disney, P. (2001). Modelling of tornado and microburst-induced wind loading and failure of a lattice transmission tower., Engineering Structures, Vol. 23, pp.365-375.

DOI: https://doi.org/10.1016/s0141-0296(00)00045-6

[4] Hangan, H., Roberts, D., Xu, Z., and Kim, J. (2003). Downburst simulation. Experimental and numerical challenges., Proceedings of the 11th International Conference on Wind Engineering, Lubbock, Texas, Electronic Version.

[5] Shehata, A. Y. (2006). Analysis and behaviour of guyed transmission line structures under downburst wind loading., Ph.D. Thesis, The University of Western Ontario, London, Canada.

[6] Shehata, A. Y., El Damatty, A. A., and Savory, E. (2005). Finite element modelling of transmission line under downburst wind loading., Finite Element in Analysis and Design, Vol. 42, pp.71-89.

DOI: https://doi.org/10.1016/j.finel.2005.05.005

[7] Zhu, S. and Etkin, B. (1985). Model of the wind field in a downburst., Journal of Aircraft, Vol. 22, pp.595-601.

[8] Holmes, J. D. and Oliver, S. E. (2000). An empirical model of a downburst., Engineering Structures, Vol. 22, pp.1167-1172.

DOI: https://doi.org/10.1016/s0141-0296(99)00058-9

[9] American Society of Civil Engineers (ASCE) (1991). Guidelines for electrical transmission line structural loading., ASCE Manuals and Reports on Engineering Practice, No. 74, New York.

[10] National Research Council of Canada, (1996). User's guide-NBC 1995 structural commentaries (Part 4)., Canadian Commission on Building and Fire Codes, National Research Council of Canada, Ottawa.

[11] Ladubec, C. (2007). Linear and non-linear analysis of transmission line structures under normal and downburst wind loading., M. Sc. Dissertation. The University of Western Ontario, London, Ontario, Canada.

[12] Koziey, B. and Mirza, F. (1994). Consistent curved beam element., Computers and Structures, Vol. 51, No. 6, 643-654.

DOI: https://doi.org/10.1016/s0045-7949(05)80003-3

[13] Gerges, R. R. and El-Damatty, A. A. (2002). Large displacement analysis of curved beams., Proceeding of CSCE Conference, Montreal, QC, Canada, ST 100.

[14] Desai, Y., Yu, P., Popplewell, N., and Shah, A. (1995). Finite element modelling of transmission line galloping., Computers and Structures, Vol. 57, pp.407-420.

DOI: https://doi.org/10.1016/0045-7949(94)00630-l