Uncertain Chua System Chaos Synchronization Using Single Variable Feedback

Abstract:

Article Preview

This paper treats the chaos synchronization problem of uncertain chaotic Chua circuit system. Based on Lyapunov theory, the proposed controller is featured with (a) only single variable information of the master system is needed; (b) the synchronization can also be achieved whilst the parameters of the master system are perturbed. Finally, the effectiveness of the proposed control law is also illustrated by the numerical simulation on Matlab environment.

Info:

Periodical:

Edited by:

Mohamed Othman

Pages:

2192-2196

Citation:

F. X. Chen et al., "Uncertain Chua System Chaos Synchronization Using Single Variable Feedback", Applied Mechanics and Materials, Vols. 229-231, pp. 2192-2196, 2012

Online since:

November 2012

Export:

Price:

$38.00

[1] Fengxiang Chen, Weidong Zhang, LMI criteria for robust chaos synchronization of a class of chaotic systems, Nonlinear Analysis: Theory, Methods & Applications, 2007, 67(12): 3384-3393.

DOI: https://doi.org/10.1016/j.na.2006.10.020

[2] Fengxiang Chen, Lin Chen, Weidong Zhang, Stabilization of parameters perturbation chaotic system via adaptive backstepping technique, Applied Mathematics and Computation, 2008, 200(1): 101-109.

DOI: https://doi.org/10.1016/j.amc.2007.10.051

[3] X. Tan, J. Zhang, Y. Yang, Synchronizing chaotic systems using backstepping design, Chaos, Solitons and Fractals 16 (2003) 37–45.

DOI: https://doi.org/10.1016/s0960-0779(02)00153-4

[4] Fengxiang Chen, Wei Wang, Lin Chen, Weidong Zhang, Adaptive chaos synchronization based on LMI technique, Phys. Scr. 75(2007) 285-288.

DOI: https://doi.org/10.1088/0031-8949/75/3/010

[5] Mohammad Haeri, Mahsa Dehghani, Impulsive synchronization of different hyperchaotic (chaotic) systems, Chaos, Solitons and Fractals 38 (2008) 120-131.

DOI: https://doi.org/10.1016/j.chaos.2006.10.051

[6] H. -T. Yau, Design of adaptive sliding mode controller for chaos synchronization with uncertainties, Chaos, Solitons and Fractals 22 (2004)341–347.

DOI: https://doi.org/10.1016/j.chaos.2004.02.004

[7] C. -C. Wang, J. -P. Su, A new adaptive variable structure control for chaotic synchronization and secure communication, Chaos, Solitons and Fractals 20 (2004) 967–977.

DOI: https://doi.org/10.1016/j.chaos.2003.10.026

[8] X. Yu, Y. Song, Chaos synchronization via controlling partial state of chaotic systems, International Journal Bifurcation and Chaos 11 (2001)1737–1741.

DOI: https://doi.org/10.1142/s0218127401003024

[9] X. -F. Wang, Z. -Q. Wang, G. -R. Chen, A new criterion for synchronization of coupled chaotic oscillators with application to Chua's circuits, International Journal Bifurcation and Chaos 9 (1999) 1169–1174.

DOI: https://doi.org/10.1142/s021812749900081x

[10] J. Cao, H.X. Li, D.W.C. Ho, Synchronization criteria of Lur's systems with time-delay feedback control, Chaos, Solitons and Fractals 23(2005) 1285–1298.

DOI: https://doi.org/10.1016/j.chaos.2004.06.025

[11] M.T. Yassen, Feedback and adaptive synchronization of chaotic Lu system, Chaos Solitons and Fractals 25(2005)379-386.

DOI: https://doi.org/10.1016/j.chaos.2004.11.042

[12] J. Zhang, C.G. Li, H.B. Zhang, J.B. Yu, Chaos synchronization using single variable feedback based on backstepping method, Chaos Solitons and Fractals 21(2004)1183-1193.

DOI: https://doi.org/10.1016/j.chaos.2003.12.079

[13] Fengxiang Chen, Chuansheng Zhang, Guangji Ji, Shuang Zhai, Su Zhou*, Chua system chaos synchronization using single variable feedback based on LaSalle invariance principal, Proceedings of the 2010 IEEE International Conference on Information and Automation June 20-23, Harbin, China, 301-304.

DOI: https://doi.org/10.1109/icinfa.2010.5512368

[14] Matsumoto, Takashi, A Chaotic Attractor from Chua's Circuit, IEEE Transactions on Circuits and Systems, 1984, 31 (12): 1055–1058.

DOI: https://doi.org/10.1109/tcs.1984.1085459

[15] Li Wenlin, Chen Xiuqin, Projective synchronization of Chua's chaotic system with dead-zone in the control input, Commun Nonlinear Sci Number Simulat, 14(2009)3100-3107.

DOI: https://doi.org/10.1016/j.cnsns.2008.10.011

[16] Jean-Jacques E. Slotine Weiping Li, Applied Nonlinear Control [M], Prentice Hall, (1991).