Flow Properties of Fluids Confined in Parallel-Plate Nanochannels

Abstract:

Article Preview

Molecular dynamics simulations are carried out to explore the fluid flows in parallel-plate nanochannels. A “channel moving” pressure-driven model is utilized to study the planar Poiseuille flows. Considering the slip boundary conditions, relationships among the pressure gradient, mean flow velocity and the channel width are investigated to couple the atomistic regime to continuum. The results show that the mean flow velocity almost linearly increases with the increase of the pressure gradient. The slope of the linear relationship between the pressure gradient and the mean flow velocity is nonlinearly decreased with increasing the channel width. The results indicate that the approximate accuracy is reduced with decreasing the channel width while the pressure-driven flows confined in nanochannels are approximately described by the Navier-Stokes equations.

Info:

Periodical:

Edited by:

Mohamed Othman

Pages:

22-25

Citation:

Z. Q. Zhang et al., "Flow Properties of Fluids Confined in Parallel-Plate Nanochannels", Applied Mechanics and Materials, Vols. 229-231, pp. 22-25, 2012

Online since:

November 2012

Export:

Price:

$38.00

[1] J. Koplik, and J. R. BanxDavar: Annu. Rev. Fluid Mech. Vol. 27 (1995), pp.257-292.

[2] P. A. Thompson, and M. O. Robbins: Phys. Rev. A Vol. 41 (1990), pp.6830-6837.

[3] P. A. Thompson, and S. M. Troian: Nature Vol. 389 (1997), pp.360-362.

[4] B. Y. Cao, M. Chen, and Z. Y. Guo: Phys. Rev. E Vol. 74 (2006), p.066311.

[5] K. P. Travis, B. D. Todd, and D. J. Evans: Phys. Rev. E Vol. 55 (1997), pp.4288-4295.

[6] J. L. Barrat: Phys. Rev. Lett. Vol. 82 (1999), pp.4671-4674.

[7] B. Y. Cao, M. Chen, and Z. Y. Guo: Appl. Phys. Lett. Vol. 86 (2005), p.091905.

[8] J. Koplik, J. R. Banavar, and J. F. Willemsen: Phys. Fluids A Vol. 1 (1989), pp.781-794.

[9] M. Sun, and C. Ebner: Phys. Rev. A Vol. 46 (1992), p.4813.

[10] J. Li, D. Y. Liao, and S. Yip: Phys. Rev. E Vol. 57 (1998), pp.7259-7266.

[11] H. Zhang, B. J. Zhang, and J. J. Zhang, Chem. Phys. Lett. 397, 233-236 (2004).

[12] J. A. Thomas, and A. J. H. McGaughey: Nano Lett. Vol. 8 (2008), pp.2788-2793.

[13] M. Schoen, and C. Hoheisel: Molecular Physics Vol. 56 (1985), pp.653-672.