Research on Tidal Drainage Effect of Confined Aquifer

Abstract:

Article Preview

Tidal drainage effect of confined aquifer is important to well tide interesting many relevant researchers. Through tidal analysis of water level monitoring in Chuan06 well, this paper explored the tidal drainage effect of the confined aquifer and its influence on the well tide. It indicated that: the changes in phase shift (η) and amplitude response (A) were attributed to the changes in transmissivity (T) rather than that in storativity (S), and the tidal drainage effect of isotropic aquifer could be effectively described by Hsieh model.

Info:

Periodical:

Edited by:

Mohamed Othman

Pages:

2721-2724

Citation:

X. Liao et al., "Research on Tidal Drainage Effect of Confined Aquifer", Applied Mechanics and Materials, Vols. 229-231, pp. 2721-2724, 2012

Online since:

November 2012

Export:

Price:

$38.00

[1] Bredehoeft, J. D. (1967), Response of Well-Aquifer Systems to Earth Tides, J. Geophys. Res., 72(12), 3075–3087, doi: 10. 1029/JZ072i012p03075.

DOI: https://doi.org/10.1029/jz072i012p03075

[2] Bower, D. R. (1983), Bedrock Fracture Parameters From the Interpretation of Well Tides, J. Geophys. Res., 88(B6), 5025–5035, doi: 10. 1029/JB088iB06p05025.

DOI: https://doi.org/10.1029/jb088ib06p05025

[3] Narasimhan, T. N., B. Y. Kanehiro, and P. A. Witherspoon (1984), Interpretation of Earth Tide Response of Three Deep, Confined Aquifers, J. Geophys. Res., 89(B3), 1913–1924, doi: 10. 1029/JB089iB03p01913.

DOI: https://doi.org/10.1029/jb089ib03p01913

[4] Hsieh, P. A., J. D. Bredehoeft, and J. M. Farr (1987), Determination of aquifer transmissivity from Earth tide analysis, Water Resour. Res., 23(10), 1824–1832, doi: 10. 1029/WR023i010p01824.

DOI: https://doi.org/10.1029/wr023i010p01824

[5] Doan, M. L., E. E. Brodsky, R. Prioul, and C. Signer (2006), Tidal analysis of borehole pressure - A tutorial, University of California, Santa Cruz.

[6] Elkhoury, J. E., E. E. Brodsky, and D. C. Agnew (2006), Seismic waves increase permeability, Nature, 441, 1135– 1138, doi: 10. 1038/nature04798.

DOI: https://doi.org/10.1038/nature04798

[7] Ritzi, R. W., Jr., S. Sorooshian, and P. A. Hsieh (1991).

[8] Roeloffs, E. A. (1996), Poroelastic techniques in the study of earthquake-related hydrologic phenomena, Adv. Geophys. , 37, 135-19.

DOI: https://doi.org/10.1016/s0065-2687(08)60270-8

[9] Rojstaczer, S. and S. Wolf (1992), Permeability changes associated with large earthquakes: An example from Loma Prieta, California, Geology, 20(3), 211-214.

DOI: https://doi.org/10.1130/0091-7613(1992)020<0211:pcawle>2.3.co;2

[10] Kitagawa, Y., K. Fujimori, and N. Koizumi (2002).

[11] Brodsky, E. E., E. Roeloffs, D. Woodcock, I. Gall, and M. Manga (2003), A mechanism for sustained groundwater pressure changes induced by distant earthquakes, J. Geophys. Res., 108(B8), 2390, doi: 10. 1029/2002JB002321.

DOI: https://doi.org/10.1029/2002jb002321

[12] Liu, W., and M. Manga (2009), Changes in permeability caused by dynamic stresses in fractured sandstone, Geophys. Res. Lett., 36, L20307, doi: 10. 1029/2009GL039852.

DOI: https://doi.org/10.1029/2009gl039852