Crystal Growth of Ni on Liquid-Solid Interface


Article Preview

Molecular dynamics simulations have been performed to explore the crystal growth of solid - liquid interface of pure Ni by using a potential of embedded atom (EAM) type. The solid-liquid interface is structured by liquid-solid-liquid, considering the (100) orientation. The crystal growth rates are determined by observing interfacial moving velocity, the calculated kinetic growth coefficient μ, which is defined as the ratio of kinetic growth velocity to the interface undercooled temperature, is 60cm/s/K. The melting temperature determined by time dependence of the volume per particle for different temperature is 1740 K, which is well agreement with experimental values and other simulated ones.



Edited by:

Mohamed Othman




L. Wang et al., "Crystal Growth of Ni on Liquid-Solid Interface", Applied Mechanics and Materials, Vols. 229-231, pp. 59-62, 2012

Online since:

November 2012





[1] J. Frenkel: Phys. Z. Sow Vol. 1 (1932), p.498.

[2] D. Herlach, P. Galenko and D. Holland-Moritz: Metastable Solids from Undercooled Melts (Elsevier, Amsterdam 2007).


[3] C. L. Wang, H. Zhang, T. Wang and L. Zheng: J. Crys. Grow. Vol. 287 (2006), p.252.

[4] A. Kerrache, J. Horbach and K. Binder: European Physics Letters Vol. 81 (2008), p.58001.

[5] D. Y. Sun, M. I. Mendelev, C. A. Becker and K. Dudn: Phys. Rev. B Vol. 73 (2006), p.024116.

[6] D. Y. Sun, M. Asta, J. J. Hoyt, M. I. Mendelev and D. J. Srolovitz: Phys. Rev. B Vol. 69 (2004), p.020102.

[7] C. A. Becker, M. Asta, J. J. Hoyt and S. M. Foiles: J. Chem. Phys. Vol. 124 (2006), p.164708.

[8] R. Zuo, Z. Y. Guo: J. Crys. Grow. Vol. 158 (1996), pp.377-384.

[9] Z. G. Xia, D. Y. Sun, M. Asta and J. J. Hoyt: Phys. Rev. B Vol. 75 (2007), p.012103.

[10] S. P. Chen, A. F. Voter: J. Mater. Res. Vol. 5 (1990), p.955.