Dynamic Stress Intensity Factor Computation by Using Xfem Formulation


Article Preview

In this paper, we present a modeling of planar structures under dynamic loading containing stationary cracks in order to determine the dynamic stress intensity factor (DSIF). This parameter will be evaluated by using the eXtended Finite Element Method (XFEM) coupled with two different techniques, namely the technique of displacement jump and that of interaction integral. A comparison between the two approaches is discussed. Moreover, the effects of crack orientation and damping material on the DSIF variation are tested. The good correlation of the obtained results for the treated examples with the literature ones demonstrates the effectiveness, accuracy and robustness of the computer software developed in this study.



Edited by:

Amanda Wu




G. Mohamed et al., "Dynamic Stress Intensity Factor Computation by Using Xfem Formulation", Applied Mechanics and Materials, Vol. 232, pp. 716-720, 2012

Online since:

November 2012




[1] S.H. Song, G.H. Paulino, Dynamic stress intensity factors for homogeneous and smoothly heterogeneous materials using the interaction integral method, Int. J. Solids Struct. 43 4830–4866. (2006).

DOI: https://doi.org/10.1016/j.ijsolstr.2005.06.102

[2] F. Chirino, J. Dominguez, Dynamic analysis of cracks using boundary element method, Engrg. Fract. Mech. 34 1051–1061. (1989).

DOI: https://doi.org/10.1016/0013-7944(89)90266-x

[3] Y.M. Chen, Numerical computation of dynamic stress intensity factors by a Lagrangian finite difference method, Engrg. Fract. Mech. 7. 653–660. (1975).

[4] P.H. Wen, dynamic fracture mechanics: Displacement Discontinuity method, Edited by C.A. Brebbia and J.J. Connor, Chapter 3, Computational Mechanics Publications Southampton UK and Boston USA, (1996).

[5] Z.J. Yang, A.J. Deeks, H. Hao, Transient dynamic fracture analysis using scaled boundary finite element method: a frequency-domain approach, Engrg. Fract. Mech. 74 669–687. (2007).

DOI: https://doi.org/10.1016/j.engfracmech.2006.06.018

[6] A. -V. Phan, L.J. Gray, A. Salvadori, Transient analysis of the dynamic stress intensity factors using SGBEM for frequency-domain elastodynamics, Comput. Methods Appl. Mech. Engrg , 199. 3039-3050. (2010).

DOI: https://doi.org/10.1016/j.cma.2010.06.019

[7] T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Meth. Engng. 45, 601-620. (1999).

DOI: https://doi.org/10.1002/(sici)1097-0207(19990620)45:5<601::aid-nme598>3.0.co;2-s

[8] T. Belytschko, H Chen, Singular enrichment finite element method for elastodynamic crack propagation, International Journal of Computational Methods, 1 (1), 1–15. (2004).

DOI: https://doi.org/10.1142/s0219876204000095

[9] J. Réthoré, A. Gravouil, A. Combescure, An energy-conserving scheme for dynamic crack growth using the extended finite element method, Int. J. Numer. Meth. Engng. 63, 631–659. (2005).

DOI: https://doi.org/10.1002/nme.1283

[10] D. Grégoire, Initiation, propagation, arrêt et redémarrage de fissures sous impact, doctorate thesis of INSA, (2008).

[11] J. Domiguez, F. Gallego, Time domain boundary element method for dynamic stress intensity computations, Int. J. Num. Meth. Engng., 33, 635-647. (1992).

DOI: https://doi.org/10.1002/nme.1620330309

[12] G.C. Sih, P. Paris, and G. Irwin, On cracks in rectilinearly anisotropic bodies, International Journal of Fracture Mechanics, 1 (3) 189–203. (1965).

[13] A.K. Chopra, Dynamics of structures, edited by Pearson Prentice Hall, Third edition, chapter 11 (2007).