Instable Crack Propagation Analysis with PDS-FEM

Abstract:

Article Preview

This paper studies the stability of dynamic crack propagation in a homogeneous plate with 2 parallel cracks located in an anti-symmetric manner. PDS-FEM is extended to the dynamic setting, and a method to randomly generate unbiased mesh is developed. Monte-Carlo simulation is carried out to study the crack patterns. It is shown that a solution for low and high loading rate displacement loading condition is stable or instable, respectively, since the crack pattern loses anti-symmetricity for the latter boundary condition.

Info:

Periodical:

Edited by:

Ford Lumban Gaol

Pages:

53-58

Citation:

H. Chen, "Instable Crack Propagation Analysis with PDS-FEM", Applied Mechanics and Materials, Vol. 234, pp. 53-58, 2012

Online since:

November 2012

Authors:

Export:

Price:

$38.00

[1] M . L. L. Wijerathne, K. Oguni, and M. Hori. (2009). Numerical analysis of growing crack problems using particle discretization scheme. International Journal for Numerical Methods In Engineering, Vol. 80: 1, 46–73.

DOI: https://doi.org/10.1002/nme.2620

[2] L. Casetti. (1995). Efficient symplectic algorithm for numerical simulation of Hamiltonian flows. Physica scripta, Vol. 51: 1, 29-34.

DOI: https://doi.org/10.1088/0031-8949/51/1/005

[3] M. Hori, K. Oguni, and H. Sakaguchi. (2005). Proposal of FEM implemented with particle discretization for analysis of failure phenomena, Journal of the Mechanics and Physics of solids, Vol. 53: 3, 681–703.

DOI: https://doi.org/10.1016/j.jmps.2004.08.005

[4] B. Cockburn. (2003). Discontinuous Galerkin Methods, Journal of Applied Mathematics and Mechanics, Vol. 83: 11, 731-754.

[5] S. Li, and W. K. Liu. (2004). Meshfree Particle method, Springer, ISBN: 978-3-540-22256-9.

[6] A. Sato, Y. Suzuki, D. Fukahori and K. Sugawara. (2004). Application of stress compensation displacement discontinuity method (SC-DDM) to the crack propagation analysis of multi-crack problem. Shigen-to-Sozai, Vol. 120: 9, 493-499. (In Japanese).

DOI: https://doi.org/10.2473/shigentosozai.120.493

[7] J. Jeong, H. Adib and G. Pluvinage. (2005). Proposal of new damage model for thermal shock based on dynamic fracture on the brittle materials. Journal of Non-Crystalline Solids, Vol. 351: 24-26, 2065-(2075).

DOI: https://doi.org/10.1016/j.jnoncrysol.2005.04.066

[8] Y. Xia, X. Wang and B. Yang. (1993). Brittle-ductile-brittle transition of glass fibre-reinforced epoxy under tensile impact. Journal of Materials Science Letters, Vol. 12: 8, 1481-1484.

DOI: https://doi.org/10.1007/bf00591615

[9] B.M. Butcher, L.M. Barker, D.E. Munson and C.D. Lundergan. (1964). Influence of Stress History on Time-dependant Spall in Metals. AIAA, Vol. 2: 6, 977-990.

DOI: https://doi.org/10.2514/3.2484

[10] H. Chen. (2010). Numerical analysis of failure pattern variability estimation by means of PDS-FEM. Thesis for the Degree of Doctor of Philosophy, University of Tokyo.