A 40Gb/s Transimpedance Amplifier Using Modified Regulated Cascode for Optical Fiber Communication

Abstract:

Article Preview

This paper describes the design of a 40 Gb/s transimpedance amplifier (TIA) for high-density optical fiber communication system. This TIA incorporates modified regulated cascode (RGC), three order intersecting active feedback and passive feedback. Consuming a DC power of 14.5 mW, the single-ended circuit provides a transimpedance gain of 49.5 dB and a -3dB bandwidth up to 40 GHz in IBM 90-nm CMOS technology with a 1.2 V supply. Simulation results show the equivalent input noise current integrated from 1 MHz to 30 GHz is about 6.6 Arms

Info:

Periodical:

Edited by:

Wei Deng and Qi Luo

Pages:

958-963

Citation:

Y. M. Chen et al., "A 40Gb/s Transimpedance Amplifier Using Modified Regulated Cascode for Optical Fiber Communication", Applied Mechanics and Materials, Vols. 236-237, pp. 958-963, 2012

Online since:

November 2012

Export:

Price:

$38.00

[1] Jun-De Jin and Shawn S. H. Hsu, A 40-Gb/s Transimpedance Amplifier in 0. 18-mm CMOS Technology, IEEE J. Solid-State Circuits, VOL. 43, NO. 6, Jun. 2008, p.1449 – 1457.

DOI: https://doi.org/10.1109/esscir.2006.307504

[2] Chih-Fan Liao, and Shen-Iuan Liu, A 40 Gb/s Transimpedance-AGC Amplifier and CDR Circuit for Broadband Data Receivers, IEEE J. Solid-State Circuits, VOL. 43, NO. 3, Mar. 2008, p.642 – 655.

DOI: https://doi.org/10.1109/jssc.2007.916626

[3] C. Kromer et al., A 40 Gb/s Optical Receiver in 80-nm CMOS for Short-Distance High-Density Interconnects, in IEEE Asian Solid-State Circuits Conf. (ASSCC) 2006, p.395 – 398.

DOI: https://doi.org/10.1109/asscc.2006.357934

[4] Fukuyama, et al., Photoreceiver Module Using an InP HEMT Trans-impedance Amplifier for Over 40 Gb/s, IEEE J. Solid-State Circuits, VOL. 39, NO. 10, Oct. 2004, p.1690 – 1696.

DOI: https://doi.org/10.1109/jssc.2004.833550

[5] J. Mullrich et al., High-gain Transimpedance Amplifier in InP-based HBT technology for receiver in 40Gb/s optical-fiber TDM links, IEEE J. Solid-State Circuits, VOL. 35, Sep. 2000, pp.1260-1265.

DOI: https://doi.org/10.1109/4.868033

[6] P. Fay, C. Caneau, and I. Adesia, High-speed MSM/HEMT and p-in/HEMT monolithic photoreceivers, IEEE Trans. Microwave Theory Tech., vol. 50, Jan. 2002, p.62–67.

DOI: https://doi.org/10.1109/22.981247

[7] Sung Min Park, and Hoi-Jun Yoo, 1. 25-Gb/s Regulated Cascode CMOS Transimpedance Amplifier for Gigabit Ethernet Applications, IEEE J. Solid-State Circuits, VOL. 39, No. 1, Jan. 2004, pp.112-121.

DOI: https://doi.org/10.1109/jssc.2003.820884

[8] Han Liang, Ye Yizheng and Bai Tao, 2. 5Gb/s CMOS RGC Transimpedance Amplifier, International Conference on Microelectronics, 2007, pp.19-22.

DOI: https://doi.org/10.1109/icm.2007.4497653

[9] B. Razavi, Design of Integrated Circuits for Optical Communication, NY: McGraw-Hill, (2003).

[10] S. Shekhar, J. S. Walling, and D. J. Allstot, Bandwidth extension techniques for CMOS amplifiers, IEEE J. Solid-State Circuits, vol. 41, no. 11, Nov. 2006, p.2424–2439.

DOI: https://doi.org/10.1109/jssc.2006.883336

[11] C. -H. Wu, C. -H. Lee, W. -S. Chen, and S. -I. Liu, CMOS wideband amplifiers using multiple inductive-series peaking technique, IEEE J. Solid-State Circuits, vol. 40, no. 2, Feb. 2005, p.548–552.

DOI: https://doi.org/10.1109/jssc.2004.840979