Piezoelectric Battery Design to Harvest Ambient Vibration Energy for Wireless Sensor Nodes

Abstract:

Article Preview

This paper presents a theory model based on the vibration and piezoelectric coupling mechanism. The aim is to discuss the optimization parameters for the design of a piezoelectric battery. The simulation results show the dependence of output power on external load and the device structure. High output power can be obtained by optimizing the piezoelectric battery structure parameters. Theory analysis and indicate that a piezoelectric battery for ambient vibration energy harvesting is a promising electric power source for wireless sensors nodes.

Info:

Periodical:

Edited by:

Zhenyu Du and Bin Liu

Pages:

1088-1092

DOI:

10.4028/www.scientific.net/AMM.26-28.1088

Citation:

X. Z. Du and H. Yu, "Piezoelectric Battery Design to Harvest Ambient Vibration Energy for Wireless Sensor Nodes", Applied Mechanics and Materials, Vols. 26-28, pp. 1088-1092, 2010

Online since:

June 2010

Authors:

Export:

Price:

$35.00

[1] Chandrakasan, Amirtharajah A, Goodman R, Rabiner J: Trends in low power digital signal processing Circuits and Systems. ISCAS'98. Proceedings of the 1998 IEEE International Symposium, Vol. 4(1998), pp.604-607.

DOI: 10.1109/iscas.1998.699014

[2] Roundy S, Steingart D, Frechette L, Wright P, Rabaey J: Power sources for wireless sensor networks. Wireless Sensor Networks, (2004), pp.1-17.

DOI: 10.1007/978-3-540-24606-0_1

[3] Bates JB, Dudney NJ, Neudecker B, Ueda A, Evans CD: Thin-film lithium and lithiumion batteries. Solid State Ionics, vol. 135 (2000), pp.33-45.

[4] Warneke B A: An autonomous 16mm solar-powered node for distributed wireless sensor networks. in Proc. IEEE Sensors 2002, Orlando, FL, pp.1510-1515.

[5] Amit Lal, Rajesh Duggirala, Hui Li: Pervasive Power: A Radioisotope-Powered Piezoelectric Generator. IEEE Pervasive Computing, vol. 4(1)(2005)pp.53-61.

DOI: 10.1109/mprv.2005.21

[6] Paradiso JA, Starner T: Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing Vol. 4(11)(2005), pp.18-27.

DOI: 10.1109/mprv.2005.9

[7] Shearwood S, Yates RB: Development of an electromagnetic microgenerator. Electron. Lett, vol. 33(1997), pp.1883-1884.

[8] Beeby SP, Tudor MJ, Koukharenko E, White NM, et al: Design, fabrication and simulations of microelectromagnetic vibration powered generator for low power MEMS. DTIP of MEMS and MOEMS. (2005) pp.374-379.

[9] Sterken T, Baert K, Puers R, Borghs S, Mertens R: A new power MEMS component with variable capacitance. in Proc. 2003 Pan Pacific Symposium Conference., (2003), pp.24-27.

[10] Roundy S, Wright PK, Pister KSJ: Micro-Electrostatic Vibration-to-Electricity Converters. ASME IMECE, Nov. 17-22, 2002, New Orleans, Louisiana.

DOI: 10.1115/imece2002-39309

[11] Roundy S, Wright PK: A piezoelectric vibration based generator for wireless electronics. Smart Materials and Structures, vol. 13(2004), pp.1131-1142.

DOI: 10.1088/0964-1726/13/5/018

[12] Anton SR, Sodano HA, A review of power harvesting using piezoelectric materials (2003-2006) Smart Materials and Structures, Vol. 16 (2007) , pp.1-21.

DOI: 10.1088/0964-1726/16/3/r01

[13] Roundy S, Wright PK, Rabaey J: A study of low level vibrations as a power source for wireless sensor nodes. Computer communications, vol. 26. 11(2003), pp.1131-1144.

DOI: 10.1016/s0140-3664(02)00248-7

[14] Williams CB, Yates RB: Analysis of a microelectric generator for Microsystems. Sensors Actuators, A, Vol52 (1996), pp.8-11.

[15] Lu F, Lee HP, Lim SP: Modeling and analysis of micro piezoelectric power generators for micro-electro-mechanical-systems applications. Smart Materials and Structures, Vol. 13. 1 (2004), pp.57-63.

In order to see related information, you need to Login.