Effects of Substrate Temperature on the Microstructure and Properties of Al-Doped ZnO Thin Films by DC Magnetron Sputtering from AZOY® Target


Article Preview

Transparent conducting Al-doped ZnO (AZO) thin films were deposited on soda-lime glass substrates by DC magnetron sputtering with a sintered ceramic target, AZOY® that contains a small amount of Y2O3 in addition to Al2O3 and ZnO. The effect of substrate temperatures (Ts) on the structural, electrical and optical properties of the prepared AZO films was evaluated extensively. By elevating Ts, the electrical conductivity of the films could be effectively improved from 1.68 ×10-3 cm (no substrates heating) to a minimum resistivity of 4.6210-4 cm at Ts = 400oC with an average visible transmittance (400~800nm) of ~80%. It revealed that substrate heating is closely related to the crystallinity and the surface roughness of the deposited films. It is noteworthy that the transmittance in the NIR region was also improved considerably as compared to those using alloy targets by reactive magnetron sputtering and even slightly higher than those using Al-doped ZnO (1 wt.%) ceramic targets by RF sputtering.



Edited by:

Wen-Hsiang Hsieh




P. C. Yao et al., "Effects of Substrate Temperature on the Microstructure and Properties of Al-Doped ZnO Thin Films by DC Magnetron Sputtering from AZOY® Target", Applied Mechanics and Materials, Vols. 284-287, pp. 108-112, 2013

Online since:

January 2013




[1] P.J. Kelly, R.D. Arnell, Vacuum 56 (2000), 159-172.

[2] T. Minami, Thin Solid Films 516 (2008) 5822-5828.

[3] K. Ellmer, A. Klein, B. Rech, Transparent Conductive Zinc Oxide, first ed., Springer, New York, (2007).

[4] T. Minami, H. Sato, H Nanto, S. Takata, Thin Solid Films 176 (1989) 277-282.

[5] T. Minami, H. Sato, H. Nanto, S. Takata, Jpn. J. Appl. Phys. 24 (1985) L781-L784.

[6] B. Szyszka, Thin Solid Films 351 (1999) 164-169.

[7] R. Kaur, A.V. Singh, R.M. Mehra, J. Non-Cryst. Solids 352 (2006) 2335-2338.

[8] F. Ruske, V. Sittinger, W. Werner, B. Szyszka, K. -U. Osten, K. Dietrich, R. Rix, Surf. Coat. Technol. 200 (2005) 236-240.

[9] T. Minami, T. Yamamoto, T. Miyata, Thin Solid Films 366 (2000) 63-68.

[10] P.C. Yao, S.T. Hang, M.J. Wu, and W.T. Shiao, Thin Solid Films 520 (2012) 2846-2854.

[11] T. Minami, H. Sato, T. Sonoda, H. Nanto, S. Takata, Thin Solid Films 171 (1989) 307-311.

[12] O. Kluth, G. Schope, J. Hupkes, C. Agashe, J. Muller, B. Rech, Thin Solid Films 442 (2003) 80-85.

DOI: https://doi.org/10.1016/s0040-6090(03)00949-0

[13] J.F. Chang, M.H. Hon, Thin Solid Films 386 (2001) 79-86.

[14] M. Chen, Z.L. Pei, X. Wang, C. Sun, L.S. Wen, J. Vac. Sci. Technol. A 19 (2001) 963-970.

[15] J.F. Chang, C.C. Shen, M.H. Hon, Ceramics International 29 (2003) 245-250.

[16] J.H. Jou, M.Y. Han, D.J. Cheng, J. Appl. Phys. 71 (1992) 4333-4336.

[17] K.C. Park, D.Y. Ma, K.H. Kim, Thin Solid Films 305 (1997) 201-209.

[18] T.L. Tansley, D.F. Neely, Thin Solid Films 121 (1984) 95-107.

[19] S.S. Lin, J.L. Huang, P. Sajgalik, Surf. Coat. Technol. 190 (2005) 39-47.

[20] E. Fortunato A., Goncalves, V. Assuncao, A. Marques, H. Aguas, L. Pereira, I. Ferreira, R. Martins, Thin Solid Films 442 (2003) 121-126.

[21] C. Oliveira, L. Rebouta, T. de Lacerda-Arôso, S. Lanceros-Mendez, T. Viseu, C.J. Tavares, J. Tovar, S. Ferdov, E. Alves, Thin Solid Films 517 (2009) 6290-6293.

DOI: https://doi.org/10.1016/j.tsf.2009.02.069

[22] Z.L. Pei, C. Sun, M.H. Tan, J.Q. Xiao, D.H. Guan, R.F. Huang, L.S. Wen, J. Appl. Phys. 90 (2001) 3432-3436.

[23] W. Beyer, J. Hüpkes, H. Stiebig, Thin Solid Films 516 (2007) 147-154.