Critical Electric Field of InGaN p-i-n Solar Cell


Article Preview

We present a study of electric field effect on the efficiency of GaN/In0.1Ga0.9N p-i-n solar cells by using the advanced physical models of semiconductor devices (APSYS) simulation program. In this study, the electric field strength and other parameters such as optimum thickness of p-type layer and efficiency of GaN/In0.1Ga0.9N p-i-n solar cells with different i-layer thicknesses have been performed. On the basis of simulating results, for a high efficiency solar cell, it is found that the optimum p-type layer concentration is above 4×1016 cm-3 and the suitable thickness is between 0.1 to 0.2 μm. For different i-layer thickness and p-doping concentrations, a critical electric field (Fc) has been found at 100 kV/cm. It is worth to note that when the electric field strength of i-layer below Fc value, the solar cell efficiency will dramatically decrease. Thus Fc can be seen as an index for acquiring the quality of solar device.



Edited by:

Wen-Hsiang Hsieh




D. Y. Lin and C. Y. Chi, "Critical Electric Field of InGaN p-i-n Solar Cell", Applied Mechanics and Materials, Vols. 284-287, pp. 1168-1172, 2013

Online since:

January 2013




[1] S. Nakamura, M. Senoh and T. Mukai: Jpn. J. Appl. Phys. Vol. 32 (1993), p. L8.

[2] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano and K. Chocho: Appl. Phys. Lett. Vol. 72 (1998), p. (2014).


[3] L. Rigutti, M. Tchernycheva, A. De Luna Bugallo, G. Jacopin, F. H. Julien, L. F. Zagonel, K. March, O. Stephan, M. Kociak, and R. Songmuang: Nano Lett. Vol. 10 (2010), p.2939.


[4] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi: Appl. Phys. Lett., Vol. 80 (2002), p.3967.

[5] C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. lza, S. P. DenBaars, and U. K. Mishra: Appl. Phys. Lett. Vol. 93 (2008), p.143502.

[6] M. J. Jeng, Y. L. Lee and L. B. Chang: J. Phys. D: Appl. Phys. Vol. 42 (2009), p.105101.

[7] Y. A. Chang, H. C. Kuo, T. C. Lu, F. I. Lai, S. Y. Kuo, L. W. Laih, L. H. Laih, and S. C. Wang: Jpn. J. Appl. Phys. Vol. 49 (2010), p.122301.


[8] O. Jani, I. Ferguson, C. Honsberg and S. Kurtz: Appl. Phys. Lett. Vol. 91 (2007), p.132117.

[9] R. H. Horng, S. H. Lin, Y. L. Tasi, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu: IEEE Electron Device Lett. Vol. 30 (2009), p.724.