Axial Compression for Direct Capture of Carbon Dioxide (CO2)


Article Preview

One prospective method to retard the speed of climate change is Carbon Capture and Storage (CCS). It is known that reducing emissions through CCS on point sources can only slowdown the rate of increase of atmospheric CO2 concentration and not able to mitigate the CO2 that are already in the atmosphere by previous emissions. Hence, a complimentary method would be to extract CO2 directly from air – Direct Air Capture (DAC). This paper addresses a novel concept of DAC whereby an additional phase of axial compression is introduced to adapt atmospheric air to a level suitable for capture. An axial compression model was developed so that fluid simulation studies can be performed. These information are then utilized in a feasibility study to address several key issues: the additional energy penalty when applying axial compression and whether or not, increasing the capture input by compression would displace the elevated energy consumption.



Edited by:

Wen-Hsiang Hsieh




H. X. M. Chan et al., "Axial Compression for Direct Capture of Carbon Dioxide (CO2)", Applied Mechanics and Materials, Vols. 284-287, pp. 35-40, 2013

Online since:

January 2013




[1] N. Stern: Stern Review on the Economics of Climate Change (Cambridge University Press, Cambridge 2006).

[2] B. Metz, O. Davidson, H. de Coninck, M. Loos and L. Meyer: Intergovernmental Panel on Climate Change. Special Report on Carbon Dioxide Capture and Storage (Cambridge University Press, Cambridge 2005).

[3] K. S. Lackner, P. Grimes and H. -J. Ziock: Capturing Carbon Dioxide from Air. Proceedings of the First National Conference on Carbon Sequestration, (2001); Washington, DC.

[4] H. Herzog: Assessing the Feasibility of Capturing CO2 from the Air (Massachusetts Institute of Technology, Cambridge 2003).

[5] D. Keith, M. Ha-Duong and J. Stolaroff: Climatic Change Vol. 74 (2005), p.17.

[6] M. Mahmoudkhani and D. W. Keith: Int. J. Greenhouse Gas Control Vol. 3 (2009a), p.376.

[7] M. Mahmoudkhani, K. R. Heidel, J. C. Ferreira, D. W. Keith and R. S. Cherry: Energy Procedia Vol. 1 (2009b), p.1535.

[8] J. K. Stolaroff, D. W. Keith and G. V. Lowry: Environ. Sci. Technol. Vol. 42 (2008), p.2728.

[9] T. Wang, K. S. Lackner and A. Wright: Environ. Sci. Technol. Vol. 45 (2011), p.6670.

[10] J. M. T. Thompson, B. Launder: Geo-Engineering Climate Change: Environmental Necessity or Pandora's Box? (Cambridge University Press, Cambridge 2009).

[11] D. M. D'Alessandro, B. Smit and J. R. Long: Angew. Chem. Int. Ed. Vol. 49 (2010), p.6058.

[12] R. Socolow, M. Desmond, R. Aines, J. Blackstock, O. Bolland, T. Kaarsberg, N. Lewis, M. Mazzotti, A. Pfeffer, K. Sawyer, J. Siirola, B. Smit, J. Wilcox: Direct Air Capture of CO2 with Chemicals A Technology Assessment for the APS Panel on Public Affairs (American Physical Society, Maryland 2011).

[13] R. Baciocchi, G. Storti and M. Mazzotti: Chem. Eng. Process. Vol. 45 (2006), p.1047.

[14] J. Ciferno J. Litynski L. Brickett J. Murphy R. Munson C. Zaremsky J. Marano J. Strock: DOE/NETL Advanced Carbon Dioxide Capture R&D Program: Technology Update (National Energy Technology Laboratory, Albany 2011).


[15] T. Harkin, A. Hoadley and B. Hooper: Energy Procedia Vol. 4 (2011), p.1339.

[16] J. P. Ciferno, T. Fout and D. Nicolet: Ramgen Supersonic Shock Wave Compression and Engine Technology (National Energy Technology Laboratory, Albany 2011).

[17] S. L. Dixon and C. A. Hall: Fluid Mechanics and Thermodynamics of Turbomachinery (Elsevier, Massachusetts 2010).

[18] R. S. Gorla and A. A. Khan: Turbomachinery Design and Theory (Marcel Dekker, New York 2003).

[19] E. Logan and R. Roy: Handbook of Turbomachinery (Marcel Dekker, New York 2003).

[20] Y. Cengel and M. Boles: Thermodynamics: An Engineering Approach (McGraw-Hill, New York 2010).

[21] S. Gordon and B. J. McBride: Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications I. Analysis (National Aeronautics and Space Administration, Cleaveland 1994).

[22] S. Gordon and B. J. McBride: Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications II. Users Manual and Program Description (National Aeronautics and Space Administration, Cleveland 1996).

[23] C. L. Ladson and C. W. Brooks Jr.: Development of a Computer Program To Obtain Ordinates for NACA 6- and 6A-Series Airfoils (National Aeronautics and Space Administration 1974).

[24] I. H. Abbott and A. E. Von Doenhoff: Theory of Wing Sections (Dover Publications, New York 1959).

[25] E. N. Jacobs, R. M. Pinkerton, and H. Greenberg: Tests of Related Forward-Camber Airfoils in the Variable-Density Wind Tunnel (National Aeronautics and Space Administration, Springfield 1937).

[26] T. Theodorsen: Theory of Wing Sections of Arbitary Shape (National Aeronautics and Space Administration, Langley Field 1931).

[27] W. B. Briggs, Editors, Effect of Mach Number on the Flow and Application of Compressibility Corrections in a Two-Dimensional Subsonic-Transonic Compressor Cascade having Varied Porous Wall Suction at the Blade Tips, National Aeronautics and Space Administration, Cleveland (1952).

[28] R. I. Issa: J. Comput. Phys. Vol. 62 (1986), p.40.

[39] S. V. Patankar: Numerical Heat Transfer and Fluid Flow (McGraw-Hill, New York 1980).

[30] H. K. Versteeg and W. Malalasekera: An introduction to Computational Fluid Dynamics (Longman, New York 1995).

[31] K. Michael, A. Golab, V. Shulakova, J. Ennis-Kinga, G. Allinson, S. Sharma, T. Aikene: Int. J. Greenhouse Gas Control Vol. 4 (2010), p.659.