Influence of Different Sliding Velocity on the Thermo-Mechanical Coupling of the Rough Surface Contact

Abstract:

Article Preview

Sliding velocity has a direct impact on friction heat and contact situation. Frictional heating and associated temperature seriously affects the material chemical and physical - mechanical properties, and is one of the direct factors on the wear mechanism. To analyze the influence of the sliding speed on the maximum contact temperature, contact pressure, stress, etc, a 3D thermo-mechanical coupling model for the rough surface frictional sliding is established. The rough surface is characterized based on fractal theory. The model considers friction contact between an elastic flat plane and an elasto-plastic rough surface. Also, the model integrates the heat flux coupling between the sliding surfaces and allows the analysis of the effects of elastic-plastic deformation of rough body and the interplay among asperities. The numerical results from the analysis and simulation show that the maximum contact temperature increases with the increasing of the sliding velocity. But the maximum VonMises equivalent stress and the maximum contact pressure have few relationships with sliding speed. They may increase or reduce with the sliding velocity increasing. Some results are validated by research’s results available in the literature.

Info:

Periodical:

Edited by:

Honghua Tan

Pages:

332-336

Citation:

C. H. Gao et al., "Influence of Different Sliding Velocity on the Thermo-Mechanical Coupling of the Rough Surface Contact", Applied Mechanics and Materials, Vols. 29-32, pp. 332-336, 2010

Online since:

August 2010

Export:

Price:

$38.00

[1] H. Sofuoglu, A. Ozer: Tribol. International Vol. 41(2008), p.783.

[2] Y. Zhang: Dry Tribological of the Materials (Science Press, China 2007).

[3] W. R. Chang, I. Etsion, D. B. Bogy: ASME J. Tribol. Vol. 101(1987), p.15.

[4] Y. Zhao, D. M. Maietta, L. Chang: ASME J. Tribol. Vol. 122(2000), p.86.

[5] H. Aramaki, S. Cheng, Y. Chung: ASME J. Tribol. Vol. 115(1993), p.419.

[6] L. Kogut, I. Etsion: ASME J. Appl. Mech. Vol. 69(2002), p.657.

[7] L. Kogut, I. Etsion: STLE Tribol. Trans. Vol. 46(2003), p.383.

[8] L. P. Lin, J. F. Lin: ASME J. Tribol. Vol. 128(2006), p.221.

[9] A. Jamil, F. Kambiz: Int. J. Non-Linear Mech. Vol. 40(2005), p.495.

[10] L. J. Robert, G. Itahak: Tribol. Int. Vol. 39(2006), p.906.

[11] K. Komvopoulos, N. Ye: ASME J. Tribol. Vol. 124(2002), p.775.

[12] L. Pei, S. Hyun, J. F. Molinari, M. O. Robbins: J. Mech. Phys. Solids Vol. 53(2005), p.2385.

[13] P. Sahoo, N. Ghosh: J. Phys. D: Applied Physics Vol. 40(2007), p.4245.

[14] L.J. Rober, S.D. Ravi, M. Hasnain, M. Manoj: Wear Vol. 262(2007), p.210.

[15] D. Goerke, K. Willner: Wear Vol. 264(2008), p.589.

[16] H. Chen, Y. Hu, H. Wang, X. Gao, R. Li: Lubrication Engineering Vol. 32(2007), p.4.

[17] M. Hamraoui, Z. Zouaoui: Int. J. Therm. Sci. Vol. 48(2009), p.1243.

[18] Y. Chen, S. Lee: ASME J. Tribol. Vol. 131(2009), 011401.

[19] W. Yan, K. Komvopoulos: J. Appl. Phys. Vol. 84(1998), p.3617.

[20] C. H. Gao, J. M. Huang, X. Z. Lin and X.S. Tang: ASME J. Tribol. Vol. 129(2007), p.536.

[21] J. Huang, C. Gao: Advanced Materials Research Vols. 97-101(2010), p.1248.

[22] Practical Book of Engineering Materials Editorial Board: Practical Book of Engineering Materials (Standards Press of China, China 1989).

[23] Editorial Committee of Databook of Materials for Mechanical Engineering: Databook of Materials for Mechanical Engineering (China Machine Press, China 1994).

[24] M. Ciavarella, P. Decuzzi, G. Monno: Int. J. Mech. Sci. Vol. 42(2000), p.1307.