Authors: Yan Song Diao, Fei Yu, Dong Mei Meng
Abstract: When the AR model is used to identify the structural damage, one problem is often met, that is the method can only make a decision whether the structure is damaged, however, the damage location can not be identified exactly. A structural damage localization method based on AR model in combination with BP neural network is proposed in this paper. The AR time series models are used to describe the acceleration responses. The changes of the first 3-order AR model parameters are extracted and composed as damage characteristic vectors which are put into BP neural network to identify the damage location. The effectiveness of the method is validated by the results of numerical simulation and experiment for a four-layer offshore platform. Only the acceleration responses can be used adequately to localize the structural damage, without the usage of modal parameter and excitation force. Thus the dependence on the modal parameter and excitation can be avoided in this method.
1211
Authors: Feng Ge Li, Hong Yu
Abstract: A new method to diagnose the damage of masonry structure using artificial network is brought forward. The frequencies and the ratio of change for any two orders various frequencies is chosen as a damage indicator and is used to train the BP neural network, which can diagnose the damage of masonry structure. The result of the numerical computation shows that the BP neural network can diagnose the damage of masonry structure.
1148
Abstract: BP neural network is introduced and applied to identify and diagnose both location and extent of bridge structural damage; static load tests and dynamic calculations are also made on bridge structural damage behind abutment. The key step of this method is to design a reasonably perfect BP network model. According to the current knowledge, three BP neural networks are designed with horizontal displacement rate and inherent frequency rate as damage identification indexes. The neural networks are used to identify the measurement of structure behind abutment and the calculation of damage location and extent, at the same time, they can also be used to compare and analyze the results. The test results show that: taking the two factors (static structural deformation rate and the change rate of natural frequency in dynamic response) as input vector, the BP neural network can accurately identify the damage location and extent, implying a promising perspective for future applications.
440