Antibiotic Effects of Four Exogenous Phenolic Acids on Soilborne Pathogen, Cylindrocarpon destructans


Article Preview

Cylindrocarpon root rot caused by Cylindrocarpon destructans is a serious disease on ginseng (Panax ginseng) in northeast China. Some allelochemicals (phenolic acids) from root exudates and decaying residues of ginseng plant may be related to Cylindrocarpon root rot. The antibiotic effects of phenolic acids on Cylindrocarpon destructans were studied to investigate the relationships between the phenolic acids and the fungus in the plant-microbe interaction. Results show that the hyphal growth of C. destructans was inhibited by salicylic, cinnamic and benzoic acid. At the highest concentration (1600 μg ml-1) of salicylic and cinnamic acid, the colony diameter of C. destructans decreased by 32.47% and 23.78%, respectively. C. destructans growth was powerfully repressed by benzoic acid in a concentration-dependent manner. However, activities of phytopathogenic enzymes (pectinase and cellulase) were greatly stimulated by the phenolic acids. It was concluded that phenolic acids inhibited the growth of C. destructans but dramatically stimulated activities of hydrolytic enzymes of C. destructans.



Edited by:

Xiaochun Tang, Wei Zhong, Dachang Zhuang, Chunsheng Li and Yanyan Liu




J. M. Sun et al., "Antibiotic Effects of Four Exogenous Phenolic Acids on Soilborne Pathogen, Cylindrocarpon destructans", Applied Mechanics and Materials, Vols. 295-298, pp. 2294-2299, 2013

Online since:

February 2013




[1] T.S. Wang, China Ginseng. Shenyang: Liaoning Science and Technology Press, (2001).

[2] M.B. Ali, K.W. Yu, E.J. Hahn and K.Y. Paek: Plant Cell Reports, vol. 25 (2006), p.613.

[3] I.P. Ahn and Y.H. Lee: Molecular Plant-Microbe Interactions, vol. 14 (2001), p.496.

[4] J.H. Kim, S.G. Kim, M.S. Kim, Y.H. Jeon, D.H. Cho and Y.H. Kim: Plant Pathology Journal, vol. 25 (2009), p.1.

[5] Z.K. Punja: Canadian Journal of Plant Pathology, vol. 19 (1997), p.301.

[6] M. Rahman and Z.K. Punja: Phytopathology, vol. 95 (2005), p.1381.

[7] R.D. Reeleder and R.A. Brammall: Canadian Journal of Plant Pathology, vol. 16 (1994), p.311.

[8] G. Kernaghan, R.D. Reeleder and S.M.T. Hoke: Plant Pathology, vol. 56 (2007), p.508.

[9] K.A. Seifert, C.R. McMullen, D. Yee, R.D. Reeleder and K.F. Dobinson: Phytopathology, vol. 93 (2003), p.1533.

[10] R.C. Hamelin, P. Berube, M. Gignac and M. Bourassa: Applied and Environmental Microbiology, vol. 62 (1996), p.4026.

[11] J.A. Traquair and G.P. White: Canadian Journal of Plant Pathology, vol. 14 (1992), p.310.

[12] C.N. He, W.W. Gao, J.X. Yang, W. Bi, X.S. Zhang and Y.J. Zhao: Plant and Soil, vol. 318 (2009), p.63.

[13] M. Rahman and Z.K. Punja: Plant Physiology and Biochemistry, vol. 43 (2005), p.1103.

[14] A.H. Zhang, F.J. Lei, Z.X. Guo and L.X. Zhang: Allelopathy Journal, vol. 28 (2011), p.13.

[15] X.B. Bi, J.X. Yang and W.W. Gao: Allelopathy Journal, vol. 25 (2010), p.115.

[16] Y. Li, X.F. Huang and W.L. Ding: Allelopathy Journal, vol. 28 (2011), p.145.

[17] R.W. Nicol, J.A. Traquair and M.A. Bernards: Canadian Journal of Botany, vol. 80 (2002), p.557.

[18] R.W. Nicol, L. Yousef, J.A. Traquair and M.A. Bernards: Phytochemistry, vol. 64 (2003), p.257.

[19] L.F. Yousef and M.A. Bernards: Phytochemistry, vol. 67 (2006), p.1740.

[20] D.B. Nehl, S.J. Allen and J.F. Brown: Applied Soil Ecology, vol. 5 (1997), p.1.

[21] R. Locher, H.V. Martin, R. Grison and P.E. Pilet: Physiol Plantarum, vol. 90 (1994), p.734.

[22] G. Wallace and S.C. Fry: Phytochemistry, vol. 52 (1999), p.769.

[23] H.W. Wu, T. Haig, J. Pratley, D. Lemerle and M. An: Journal of Chemical Ecology, vol. 27 (2001), p.125.

[24] J.Q. Yu, S.F. Ye, M.F. Zhang and W.H. Hu: Biochemical Systematics and Ecology, vol. 31 (2003), p.129.

[25] B.K. Hwang, J.Y. Sunwoo, Y.J. Kim and B.S. Kim: Physiological and Molecular Plant Pathology, vol. 51 (1997), p.305.

[26] Y.Y. Lu and C.Y. Chen: Plant Science, vol. 169 (2005), p.1.

[27] P.F. Wen, J.Y. Chen, W.F. Kong, Q.H. Pan, S.B. Wan and W.D. Huang: Plant Science, vol. 169 (2005), p.928.

[28] C.F. Fernandes, V.C.P. Moraes, I.M. Vasconcelos, J.A.G. Silveira and J.T.A. Oliveira: Journal of Plant Physiology, vol. 163 (2006), p.1040.

[29] T. Fujii, C. Shimaya, A. Yano, K. Terado, H. Sugino and H. Fukuda: Biotechnology Letters, vol. 24 (2002), p.151.


[30] F.N. Arroyo-Lopez, J. Bautista-Gallego, M.C. Duran-Quintana and A. Garrido-Fernandez: Food Microbiology, vol. 25 (2008), p.566.

[31] V. Ani, M.C. Varadaraj and K.A. Naidu: European Food Research and Technology, vol. 224 (2006), p.109.

[32] M. Rahman and Z.K. Punja: Phytopathology, vol. 96 (2006), p.1179.

[33] D. Silva, K. Tokuioshi, E.D. Martins, R. Da Silva and E. Gomes: Process Biochemistry, vol. 40 (2005), p.2885.


[34] A. Berlin, N. Gilkes, D. Kilburn, R. Bura, A. Markov, A. Skomarovsky, O. Okunev, A. Gusakov, V. Maximenko, D. Gregg, A. Sinitsyn and J. Saddler: Enzyme and Microbial Technology, vol. 37 (2005), p.175.


[35] O.H. Lowry, N.J. Rosebrough, A.L. Farr and R.J. Randall: The Journal of biological chemistry, vol. 193 (1951), p.265.

[36] S. Kuwatsuka and H. Shindo: Soil Sci. and Plant Nutri., vol. 19 (1973), p.219.

[37] G.P. Sparling, B.G. Ord and D. Vaughan: Soil Biol. Biochem., vol. 13 (1981), p.455.

[38] J.G. Lee, B.Y. Lee and H.J. Lee: Scientia Horticulturae, vol. 110 (2006), p.119.

[39] H.J. Yao and S.P. Tian: Postharvest Biology and Technology, vol. 35 (2005), p.253.

[40] C.E. l. Modafar and E.E. l. Boustani: Biologia Plantarum, vol. 44 (2001), p.125.

[41] H.S. Wu, W. Raza, J.Q. Fan, Y.G. Sun, W. Bao and Q.R. Shen: Journal of Agricultural and Food Chemistry, vol. 56 (2008), p.1316.

[42] H.S. Wu, Y. Wang, C.Y. Zhang, M. Gu, Y.X. Liu, G. Chen, J.H. Wang, Z. Tang, Z.S. Mao and Q.R. Shen: Folia Microbiologica, vol. 54 (2009), p.115.

[43] H.S. Wu, S.H. Shen, J.M. Han, Y.D. Liu and S.D. Liu: Phytopathologia Mediterranea, vol. 48 (2009), p.439.

[44] A. Fuchs, J.A. Jobsen and W. Wouts: Nature vol. 206 (1965), p.714.

Fetching data from Crossref.
This may take some time to load.