Adaptive Synchronization of One-Dimensional Discrete Chaotic Systems on Complex Networks


Article Preview

A method of adaptive synchronization of one-dimensional discrete chaotic systems on complex networks is proposed. The nodes of complex networks are constructed by one-dimensional discrete chaotic systems, we consider a general drive-response synchronization model of one-dimensional discrete chaotic systems on complex dynamical networks. Based on the adaptive control technique, the parameter adaptive laws and property conversion laws are given to achieve synchronization and parameters identification simultaneously. Simulation results show that the arithmetic average and geometric mean of all the nodes states are equal, furthermore, the unknown node parameters can be successfully identified, all nodes are transformed to drive nodes. This indicates that chaos synchronization is reached in the whole networks.



Edited by:

Prasad Yarlagadda and Yun-Hae Kim




Y. F. Chen and Z. Jia, "Adaptive Synchronization of One-Dimensional Discrete Chaotic Systems on Complex Networks", Applied Mechanics and Materials, Vols. 321-324, pp. 1962-1966, 2013

Online since:

June 2013




[1] D. J. Watts and S. H. Strogatz: Nature, vol. 391(1998), p.440.

[2] A. -L. Barabási and R. Albert: Science, vol. 286(1999), p.509.

[3] S. H. Strogatz: Nature, vol. 410(2001), p.268.

[4] R. Albert, H. Jeong, and A. -L. Barabási: Nature, vol. 401(1999), p.130.

[5] P. Sen, S. Dasgupta, A. Chatterjee, P.A. Sreeram, G. Mukherjee, and S.S. Manna: Phys. Rev. E, vol. 67(2003), p.036106.

[6] M.E. J Newman: PNAS, vol. 98(2001), p.404.

[7] A.J. McKane: Eur. Phys. J. B, (2004), p.287.

[8] T. Xu, J. Chen, Y. He, and D.R. He: J. Mod. Phys. B, vol. 18(2004), p.2599.

[9] L. M. Pecora and T. L. Carroll: Phys. Rev. Lett., vol. 64(1990), p.821.

[10] Z. Jia and G.M. Deng: Journal of Applied Mathematics, vol. 2012(2012), p.595360.

[11] J. Lü, X. Yu, and G. Chen: Phys. A, vol. 334(2004), p.281.

[12] Q.J. Zhang, J.A. Lu, J.H. Lü, and C.K. Tse: IEEE Trans. Circuits Syst. II, vol. 55(2008), p.183.

[13] J. Zhou, J.A. Lu, and J.H. Lü: Automatica, vol. 44(2008), p.996.

[14] S. Sinha, R. Ramaswamy, and J.S. Rao: Phys. D vol. 43(1990), p.118.

[15] P. M. Gade: Phys. Rev. E, vol. 54(1996), p.64.

[16] P.M. Gade, and K. M. Hu: Phys. Rev. E, Vol. 60(1999), p.4966.

[17] P. M. Gade, and K.M. Hu: Phys. Rev. E, vol. 62(2000), p.6409.