Source Camera Identification Based on In-and-Inter Channel Traces

Abstract:

Article Preview

Source camera detecting, which is about establishing whether or not the images of interest are taken by the same camera, is a challenging problem. Most CFA(color filter array) interpolation algorithm characterize the feature of camera which take the image. In this paper, we propose an improved algorithm. Instead of using inter-channel demosaicking/color interpolation traces, we first extract four in-and-inter-channel variance maps, respectively, and then extract the shape, similarity and difference features of maps for camera model identification. The experimental results show that the method had significantly improved the accuracy rate of source digital image identification.

Info:

Periodical:

Edited by:

X.D. Yu

Pages:

3754-3757

DOI:

10.4028/www.scientific.net/AMM.380-384.3754

Citation:

Y. J. Xie et al., "Source Camera Identification Based on In-and-Inter Channel Traces", Applied Mechanics and Materials, Vols. 380-384, pp. 3754-3757, 2013

Online since:

August 2013

Export:

Price:

$35.00

[1] Gloe T. , Böhme R. The Dresden image database, for benchmarking digital image forensics[C]. Proceedings of the ACM Symposium on Applied Computing, 2010: 1584-1590.

DOI: 10.1145/1774088.1774427

[2] Lukas J., Fridrich J., Goljan M. Digital camera identification from sensor pattern noise [J]. IEEE Transactions on Information Forensics and Security. 2006, 1(2): 205- 214.

DOI: 10.1109/tifs.2006.873602

[3] Li Chang-Tsun. Source Camera Identification Using Enhanced Sensor Pattern Noise [J]. IEEE Transactions on Information Forensics and Security, 2010, 5(2): 280-287.

DOI: 10.1109/tifs.2010.2046268

[4] Liu Bei-Bei, Hu Yong-jian, Lee Heung-Kyu. Source camera identification from significant noise residual regions [C]. Proceedings - International Conference on Image Processing, 2010: 1749-1752.

DOI: 10.1109/icip.2010.5652426

[5] Xiangui Kang, Yinxiang Li, Zhenhua Qu, Jiwu Huang. Enhancing Source Camera Identification Performance With a Camera Reference Phase Sensor Pattern Noise[J] IEEE Transactions on Information Forensics and Security, 2012, 7(2) : 393-402.

DOI: 10.1109/tifs.2011.2168214

[6] Dirik A.E., Sencar H. T., Memon N. Source Camera Identification Based on Sensor Dust Characteristics[J]. IEEE Transactions on Information Forensics and Security, 2008, 3(3): 539-552.

DOI: 10.1109/tifs.2008.926987

[7] Cao Hong, Kot A.C. Accurate Detection of Demosaicing Regularity for Digital Image Forensics[J]. IEEE Transactions on Information Forensics and Security. 2009, 4(4): 899-910.

DOI: 10.1109/tifs.2009.2033749

[8] Ho J. S., Au O. C., Zhou Jiantao, et al. Inter-channel demosaicking traces for digital image forensics[A]. IEEE International Conference on Multimedia and Expo, Singapore, (2010).

DOI: 10.1109/icme.2010.5582951

[9] Hu M. K. Visual pattern recognition by moment invariants[J]. Information Theory, IRE Transactions on, 1962, 8(2): 179-187.

[10] Eskicioglu A. M., Fisher P. S. Image quality measures and their performance[J]. IEEE Transactions on Communications, 1995, 43(12): 2959-2965.

DOI: 10.1109/26.477498

In order to see related information, you need to Login.