Modified Method for Simulation of the Filling States at the End of Injection Molding Process

Abstract:

Article Preview

In order to improve the accuracy of numerical simulation for injection molding process, a modified method for outlet condition was introduced. As the feedstock is regarded as incompressible fluid, the filling ratio should be a linear one with respect to time. But there remains a persistent trouble in previous researches that the linearity is not respected when the filling front approaches near the outlet boundary. The problem is caused by lack of adequate treatment on the outlet boundary. To remedy this defect, the present paper deals with the modeling and realization of suitable condition on outlet boundary for solution of the whole filling process. A simple straight channel mold was taken as an example to prove the proposed simulation method. The result shows that this modified method can suppress the distortion phenomenon and can be valid to realize the correct simulation for the filling of incompressible viscous flow at the ending stage. This long-term filling problem was finally solved.

Info:

Periodical:

Edited by:

Guo Ran, Zeng Yun, Zhang Jianming, Yang Yang, Li Ze and Guo Tao

Pages:

1042-1049

Citation:

J. J. Shi et al., "Modified Method for Simulation of the Filling States at the End of Injection Molding Process", Applied Mechanics and Materials, Vols. 444-445, pp. 1042-1049, 2014

Online since:

October 2013

Export:

Price:

$38.00

[1] H.Z. Ye, X.Y. Liu and H.P. Hong, Fabrication of metal matrix composites by metal injection molding—A review, J Mater. Process. Tech., 1-3 (2008) 12-24.

[2] U.M. Attiaa, J.R. Alcock, Fabrication of hollow, 3D, micro-scale metallic structures by micro-powder injection moulding , J. Mater. Process. Tech. 212 (2012) 2148–2153.

DOI: https://doi.org/10.1016/j.jmatprotec.2012.05.022

[3] X. Kong, T. Barriere, J.C. Gelin, Determination of critical and optimal powder loadings for 316L fine stainless steel feedstocks for micro-powder injection molding, J. Mater. Process. Tech. 212 (2012) 2173– 2182.

DOI: https://doi.org/10.1016/j.jmatprotec.2012.05.023

[4] R.S. Spencer and G.D. Gilmore, Flow phenomenon in the injection molding of polystyrene, Modern Plastics, J. Coll. Sci., 6 (1951) 143-146.

[5] R.L. Ballman, T. Schusman and H.L. Toor, Injection molding, Ind. Eng. Chem., 51 (1959) 847-850.

[6] Y. Kuo and M.R. Kamal, The fluid mechanics and heat transfer of injection molding filling of thermoplastic materials, AICHE J. 22 (1976) 661-673.

DOI: https://doi.org/10.1002/aic.690220405

[7] M.E. Ryan and T.S. Chung, Conformal mapping analysis of injection molding, Polym. Eng. Sci. 20 (1980) 642-650.

[8] C.A. Hieber and S.F. Shen, A finite element/finite difference simulation of the injection molding process, J. Non-Newton Fluid, 7 (1980) 1-11.

DOI: https://doi.org/10.1016/0377-0257(80)85012-9

[9] H.V. Wijigaarden, J.F. Dijksman and P. Wesseling, Non-isothermal flow of a molten polymer in a narrow rectangular cavity, J. Non-Newton Fluid, 11 (1982) 175-179.

DOI: https://doi.org/10.1016/0377-0257(82)85021-0

[10] H. Mavridis, A. N. Hrymak and J. Vlachopoulos, Finite element simulation of fountain flow in injection molding, Polym. Eng. Sci. 26 (1986) 449-454.

DOI: https://doi.org/10.1002/pen.760260702

[11] T. Sato and S.M. Richardson, Numerical simulation of fountain flow problem for viscoelastic fluids, Polym. Eng. Sci. 35 (1995) 805-812.

DOI: https://doi.org/10.1002/pen.760351003

[12] T. Okamura, M. Matsuda and S. Kabashima, Performance of a closed type fountain effect pump, Cryogenics, 36 (1996) 171-174.

DOI: https://doi.org/10.1016/0011-2275(96)81608-0

[13] M. Dutilly, Modélisation du Moulage par Injection de Poudres Métalliques, Ph. D thesis, Université de Franche-Comté, Besancon, France, (1998).

[14] M. Y. Lin, M. J. Murphy and H. T. Hahn, Resin transfer molding process optimization Compos. Part A-Appl. S, 31 (2000) 361-371.

[15] E.J. Holm, H.P. Langtangen, A Unified Finite Element Model for the Injection Molding Process, Comput. Method Appl. M., 178 (1999) 413-429.

DOI: https://doi.org/10.1016/s0045-7825(99)00029-8

[16] T. Barrière, J.C. Gelin and B. Liu, Improving mould design and injection parameters in metal injection moulding by accurate 3D finite element simulation, J Mater. Process. Tech. 125-126 (2002) 518-524.

DOI: https://doi.org/10.1016/s0924-0136(02)00307-2

[17] G. Dhatt, D.M. Gao and A.B. Cheikh, A finite element simulation of metal flow in moulds, Int. J. Numer Meth. Eng. 30 (1990) 821-831.

DOI: https://doi.org/10.1002/nme.1620300416

[18] D.M. Gao, Modélisation numérique du remplissage des moules de fonderie par le méthode des éléments finis, Ph. D thesis, Université de Technologie de Compiègne, France, (1991).

[19] R.W. Lewis, A.S. Usmani and T.J. Cross, Efficient mould filling simulation in castings by an explicit finite element method, Int. J. Numer. Meth. Fl. 20 (1995) 493-506.

DOI: https://doi.org/10.1002/fld.1650200606

[20] T. Barriere, B. Liu and J.C. Gelin, Experimental and numerical analyses of powder segregation in metal injection moulding, Met. Powder Rep. 5 (2002) 30-33.

DOI: https://doi.org/10.1016/s0026-0657(02)80173-4

[21] T. Barriere, B. Liu and J.C. Gelin, Determination of the optimal parameters in metal injection molding from experiments and numerical modeling, J Mater. Process. Tech. 143-144 (2003) 636-644.

DOI: https://doi.org/10.1016/s0924-0136(03)00473-4

[22] Z.Q. Cheng, T. Barriere, B.S. Liu and J.C. Gelin, A fully explicit vectorial algorithm for 3D simulation of the Metal Injection Moulding, 6th ESAFORM Conference, Salerno, Italy, (2003) 643-646.

[23] Z.Q. Cheng, Numerical Simulation on Metal Injection Moulding, Ph. D thesis, Southwest Jiaotong University, Chengdu, China, (2005).

[24] Z.Q. Cheng, T. Barriere, B.S. Liu and J.C. Gelin, A new explicit simulation for injection molding and its validation, Polym. Eng. Sci. 49 (2009)1243-1252.

DOI: https://doi.org/10.1002/pen.21324

[25] T. Barriere, Expérimentations, Modélisation et Simulation Numérique du Moulage par Injection de Poudres Métalliques, Ph. D thesis, Université de Franche-Comté, Besancon, France, (2000).

[26] J.F. Hetu, D.M. Gao, A.G. Rejon and G. Salloum, 3D finite element method for the simulation of the filling stage in injection moulding, Polym. Eng. Sci. 38 (1998) 223-236.

DOI: https://doi.org/10.1002/pen.10183

[27] E. Pichelin and T. Coupez, Finite element solution of the 3D mold filling problem for viscous incompressible fluid, Comput. Method Appl. M. 163 (1998) 359-371.

DOI: https://doi.org/10.1016/s0045-7825(98)00024-3

[28] İdris Dağ, Aynur Canıvar, Ali Şahin. Taylor–Galerkin and Taylor-collocation methods for the numerical solutions of Burgers' equation using B-splines, Commun. Nonlinear Sci., 16 (2011) 2696–2708.

DOI: https://doi.org/10.1016/j.cnsns.2010.10.009

Fetching data from Crossref.
This may take some time to load.