The Effect of Hygrothermal Composite Patch on the Fracture of Reinforced Crack under Mixed-Mode Loading


Article Preview

The mechanical properties of composite laminates play a key role in the success of composite reinforcement method, but various investigations suggest that the stiffness of epoxybased composites is sensitive to the variation of moisture ratio and temperature of the working environment. The aim in this research is to characterize the effect of hygrothermal aged composite patch on the strength of repaired cracks, under mixed mode I/II conditions. For this purpose a reinforced sheet, i.e. a crack fastener hole specimen is examined by using a finite element simulation. The crack tip parameters and fracture characteristics of repaired cracks are determined as a function of the total amount of moisture inside the composite patch. The results of this study show that the performance of composite reinforcement technique depends on the amount of water absorption within the bonded patches.



Edited by:

Patrick Sean Keogh




R. Hashemi and M. R. Ayatollahi, "The Effect of Hygrothermal Composite Patch on the Fracture of Reinforced Crack under Mixed-Mode Loading", Applied Mechanics and Materials, Vols. 5-6, pp. 189-196, 2006

Online since:

October 2006




[1] A.A. Baker, R.J. Callinan, M.J. Davis, R. Jones and J.G. Williams: Theor Appl Fracture Mech, Vol. 2 (1984), 1-16.

[2] A.A. Baker: Compos Struct, Vol. 74 (1999), 431-443.

[3] R. Jones, L. Molent, J. Paul, T. Saunders and W.K. Chiu WK: NASA CP 3274, 1994. p.339350.

[4] J.M. Gaillardon, H.J. Schmidt and B. Brandecker: NASA CP 3160, 1991. pp.283-289.

[5] A. Moropoulou, N. Kouloumbi, Z.P. Marioli-Riga, N.P. Avdelidis and P. Pantazopoulou: in Proceedings of Electrically Based Microstructural Characterization III Symposium, Boston, MA, Materials Research Society Press, 2002. pp.39-44.

[6] A. Bassetti, A. Nussbaumer, P. Colombi,: Advanced FRP Materials for Civil structures, Bologna, Italy, 2000, pp.33-42.

[7] R. Jones and R.J. Callinan: J Struct Mech., Vol. 7 (1979), 107-130.

[8] M.R. Ayatollahi and R. Hashemi: Compos Struct, 2006, Article in press.

[9] A. Megueni, A. Tounsi, B.B. Bouiadjra and B. Serier : Compos Struct , Vol. 62 (2003), 171- 176.

[10] S. Naboulsi and S. Mall: Compos Struct, Vol. 41 (1998), 303-313.

[11] G.S. Springer GS. Environmental Effects on Composite Materials, Vol. 2, Thechnomic Publishing Co. Inc., (1984).

[12] K.H. Ip, P.K. Dutta and D. Hui: Composite: Part B 2001, 599-607.

[13] ABAQUS Finite Element Program, ABAQUS/Standard 5. 8. Hibbit, Karlsson and Sorensen, Inc. Pawtuket, USA, (1998).

[14] M.L. Williams: Journal of Applied Mechanics, Vol. 24 (1957), 109-114.

[15] F. Erdogan and G.C. Sih: Journal of Basic Engng, Vol. 85 (1963), 525-527.

[16] M.A. Hussain, S.L. Pu and J. Underwood: Fracture Analysis 1974; 560: 2-28.

[17] Sih GC. Strain energy density factor applied to uniaxial mode crack problems. International Journal of Fracture, Vol. 10 (1974), 305-321.


[18] Ayatollahi MR, Aliha MRM. Cracked Brazilian specimen subjected to mode II deformation. Engineering fracture mechnics; 72(4); 2005: 493-503.


[19] M.R. Ayatollahi and M.R. M Aliha: Material science and Engineering: A, Vol. 417 (2006), 348-356.

[20] D.J. Smith, M.R. Ayatollahi and M.J. Pavier: Fatigue Fract Engng Mater Struct., Vol. 24 (2001), 137-150.

[21] M.R. Ayatollahi, M.J. Pavier and D.J. Smith: International Journal of Fracture, Vol. 91 (1998), 283-298.

[22] A.H. Sherry, C.C. France and M. R Goldthorpe: Fatigue Fract Engng Mater Struct., Vol. 18 (1995), 141-155.

[23] B. Hu, J. Gong and G. Verchery : in Proceeding of 11 th conference of the French Society for Composite materials. Arcachon, France, 18-20 November 1998, 255-264.

[24] P.C. Paris and G.C. Sih: STP381. Philadelphia: ASME 1965. pp.30-83.

[25] M. Kosai and A.S. Kobayashi: Structural Integrity of Aging Airplanes, 1991, 225-239.