Stresses in Ultrasonically Assisted Turning

Abstract:

Article Preview

Ultrasonically assisted turning (UAT) is a novel material-processing technology, where high frequency vibration (frequency f ≈ 20kHz, amplitude a ≈15μm) is superimposed on the movement of the cutting tool. Advantages of UAT have been demonstrated for a broad spectrum of applications. Compared to conventional turning (CT), this technique allows significant improvements in processing intractable materials, such as high-strength aerospace alloys, composites and ceramics. Superimposed ultrasonic vibration yields a noticeable decrease in cutting forces, as well as a superior surface finish. A vibro-impact interaction between the tool and workpiece in UAT in the process of continuous chip formation leads to a dynamically changing stress distribution in the process zone as compared to the quasistatic one in CT. The paper presents a three-dimensional, fully thermomechanically coupled computational model of UAT incorporating a non-linear elasto-plastic material model with strain-rate sensitivity and contact interaction with friction at the chip–tool interface. 3D stress distributions in the cutting region are analysed for a representative cycle of ultrasonic vibration. The dependence of various process parameters, such as shear stresses and cutting forces on vibration frequency and amplitude is also studied.

Info:

Periodical:

Edited by:

Patrick Sean Keogh

Pages:

351-358

Citation:

N. Ahmed et al., "Stresses in Ultrasonically Assisted Turning", Applied Mechanics and Materials, Vols. 5-6, pp. 351-358, 2006

Online since:

October 2006

Export:

Price:

$38.00

[1] V.I. Babitsky, A. Kalashnikov, A. Meadows and A. Wijesundara: J. Mater. Process. Technol., Vol. 132 (2003), p.157.

[2] V.I. Babitsky, A. Kalashnikov and F. Molodtsov: Mechatronics, Vol. 14 (2004), p.91.

[3] V.K. Astashev and V.I. Babitsky: Ultrasonics, Vol. 36 (1998), p.89.

[4] E.M. Trent and P.K. Wright: Metal Cutting (Butterworth-Heinemann, London 2000).

[5] T.H.C. Childs, K. Maekawa, T. Obikawa, and Y. Yamane: Metal Machining: Theory and Applications (Arnold, London 2000).

[6] A.U. Anagonye and D.A. Stephenson: J. Manuf. Sci. Eng. (Trans. ASME), Vol. 124 (2002), p.544.

[7] O. Pantale, J.L. Bacaria, O. Dalverny, R. Rakotomalala and S. Caperaa: Comput. Methods Appl. Mech. Engng., Vol. 193 (2004), p.4383.

[8] E. Ceretti, M. Lucchi and T. Altan: J. Mater. Process. Technol., Vol. 95 (1999), p.17.

[9] J.S. Strenkowski, A.J. Shih and J.C. Lin: J. Mach. Tools Manuf., Vol. 42 (2002), p.723.

[10] A.V. Mitrofanov, V.I. Babitsky and V.V. Silberschmidt: Comput Mater Sci, Vol. 28 (2003), p.645.

[11] A.V. Mitrofanov, V.I. Babitsky and V.V. Silberschmidt: J. Mater. Process. Technol., Vol. 153-154 (2004), p.233.

[12] A.V. Mitrofanov, N. Ahmed, V.I. Babitsky and V.V. Silberschmidt: J. Mater. Process. Technol., Vol. 162-163 (2005), p.649.

[13] A.V. Mitrofanov, V.I. Babitsky and V.V. Silberschmidt: Comput Mater Sci, Vol. 32 (2005), p.463.

[14] MSC. Marc User's Guide, Version 2005 (MSC Software Corporation, Los Angeles 2005).

[15] V.I. Babitsky, A.V. Mitrofanov and V.V. Silberschmidt: Ultrasonics, Vol. 42 (2004), p.81.

[16] G. Johnson and W. Cook: Eng. Fract. Mech., Vol. 2 (1985), p.31.

[17] E. -G. Ng, T. El-Wardany, M. Dumitrescu and M. Elbestawi: Machin. Sci. Technol., Vol. 6 (2002), p.301.

[18] P. Maudlin and M. Stout: Minerals, Metals and Materials Society (1996), p.29.