Decoupling the Equations of Isospectral Flow


Article Preview

Three (m × n) matrices {K, D, M} represent a second-order system in the form (K + Dλ+ Mλ2). If m = n, system eigenvalues are defined as the values of λ for which det(K + Dλ+ Mλ2) = 0. If {K, D, M} are continuous functions of a real scalar parameter, σ, eigenvalues and dimensions of the associated eigenspaces remain constant if and only if the rates of change of {K, D, M} obey certain ODEs called the isospectral flow equations. The integration of these matrix differential equations is of interest here. This paper explains the motivation behind this work in terms of vibrating systems and it reports two related hypotheses concerning how the solutions to these equations may be decoupled. Work underway towards proving and using these hypotheses is presented. No existing known solutions allow this decoupling in general.



Edited by:

Patrick Sean Keogh






S. D. Garvey et al., "Decoupling the Equations of Isospectral Flow", Applied Mechanics and Materials, Vols. 5-6, pp. 481-490, 2006

Online since:

October 2006




[1] S.D. Garvey, U. Prells, M.I. Friswell and Z. Chen: General Isospectral Flows for Linear Dynamic Systems, Linear Algebra and Applications. 385(1), July 2004, pp.335-368.

DOI: 10.1016/j.laa.2003.12.027

[2] S.D. Garvey, U. Prells and M.I. Friswell: Transformations between Strictly Isospectral Linear Dynamic Systems, Manuscript submitted to Linear Algebra and Applications, May (2006).

DOI: 10.1016/j.laa.2003.12.027

[3] M.I. Friswell, U. Prells and S.D. Garvey: Low Rank Damping Modifications and Defective Systems, Journal of Sound and Vibration. 279(3-5), Jan 2005, pp.757-774.

DOI: 10.1016/j.jsv.2003.11.042

[4] S.D. Garvey, M.I. Friswell and U. Prells: Coordinate Transformations for General Second Order Systems, Pt. I: General Transformations, Journal of Sound and Vibn. 258(5), Dec. 2002, pp.885-909.

DOI: 10.1006/jsvi.2002.5165

[5] S.D. Garvey, M.I. Friswell and U. Prells: Coordinate Transformations for General Second Order Systems, Pt. II: Elementary Transformations, Journal of Sound and Vibn. 258(5), Dec. 2002, pp.911-930.

DOI: 10.1006/jsvi.2002.5166

[6] M.T. Chu, M.T. and N. Del Buono: Total Decoupling for a General Quadratic Pencil. Part I. Theory,. Manuscript submitted to Journal of Sound and Vibration, Spring (2005).

[7] P. Lancaster and U. Prells: Inverse Problems for Damped Vibrating Systems,. Journal of Sound and Vibration. 283(3-5), May 2005, pp.891-914.

DOI: 10.1016/j.jsv.2004.05.003

[8] U. Prells and P. Lancaster: Isospectral Vibrating Systems, Part 2: Structure Preserving Transformations,. Operator Theory: Advances and Applications. 163, 2005, pp.275-298.

DOI: 10.1007/3-7643-7516-7_12

[9] G.M.L. Gladwell and A. Morassi: On Isospectral Rods Horns and Strings,. Inverse Problems. 11(3), June 1995, pp.533-554.

DOI: 10.1088/0266-5611/11/3/004

[10] G.M.L. Gladwell: Isospectral Systems,. International Journal of Applied Mechanics. 38(5), May 2002, pp.513-520.

[11] G. Hori: Joint diagonalization and matrix differential equations' in Proceedings of 1999 Intrntl. Symp. on Nonlinear Theory and its Applications (NOLTA, 99), (Hawaii, USA), 1999, pp.675-678.

[12] J.H. Manton: (2005). A Centroid (Karcher Mean) Approach to the Joint Approximate Diagonalisation Problem: The Real Symmetric Case. Digital Signal Processing. (To Appear).

DOI: 10.1016/j.dsp.2005.06.003

[13] T. K Caughey and M.E. O'Kelly: Classical normal modes in damped linear systems, Journal of Applied Mechanics, Transactions of the ASME, 32, 1965, pp.583-588.

[14] W. -H. Steeb and J.A. Louw: Nahm's equations, singular point analysis and Integrability,. Journal of Mathematical Physics, Vol. 27, 1986. pp.2458-2460.

DOI: 10.1063/1.527307

[15] A.S. Dancer: Nahm's equation and Hyperkahler geometry, Comm. Math. Physics, Vol. 158, 1993. pp.545-568.

[16] S.D. Garvey: On General Isospectral Flows for Linear Systems,. Keynote address at IOP : Modern Practice in Stress and Vibration Analysis Conf. Glasgow, Sept., 2003. Published in Materials Science Forum 440(4), pp.11-18.

[17] O. Babelon, B. Denis and M. Talon: Introduction to Classical Integrable Systems,. Cambridge University Press, (2004).

[18] P. Van Eetvelt: Private Communication to S. Garvey, September (2005).

[19] V.I. Arnol'd: Ordinary Differential Equations, Springer-Verlag, Edition III, (1992).

[20] D.H. Bailey: High Precision Software Directory, http: /crd. lbl. gov/~dhbailey/mpdist.

[21] F. Fasso: The Euler-Poinsot top: A non-commutatively integrable system without global action-angle coordinates, Zeitschrift Fur Angewandte Mathematik Und Physik 47 (6), 1996, pp.953-976.

DOI: 10.1007/bf00920045

In order to see related information, you need to Login.