[1]
S.D. Garvey, U. Prells, M.I. Friswell and Z. Chen: General Isospectral Flows for Linear Dynamic Systems, Linear Algebra and Applications. 385(1), July 2004, pp.335-368.

DOI: 10.1016/j.laa.2003.12.027
[2]
S.D. Garvey, U. Prells and M.I. Friswell: Transformations between Strictly Isospectral Linear Dynamic Systems, Manuscript submitted to Linear Algebra and Applications, May (2006).

DOI: 10.1016/j.laa.2003.12.027
[3]
M.I. Friswell, U. Prells and S.D. Garvey: Low Rank Damping Modifications and Defective Systems, Journal of Sound and Vibration. 279(3-5), Jan 2005, pp.757-774.

DOI: 10.1016/j.jsv.2003.11.042
[4]
S.D. Garvey, M.I. Friswell and U. Prells: Coordinate Transformations for General Second Order Systems, Pt. I: General Transformations, Journal of Sound and Vibn. 258(5), Dec. 2002, pp.885-909.

DOI: 10.1006/jsvi.2002.5165
[5]
S.D. Garvey, M.I. Friswell and U. Prells: Coordinate Transformations for General Second Order Systems, Pt. II: Elementary Transformations, Journal of Sound and Vibn. 258(5), Dec. 2002, pp.911-930.

DOI: 10.1006/jsvi.2002.5166
[6]
M.T. Chu, M.T. and N. Del Buono: Total Decoupling for a General Quadratic Pencil. Part I. Theory,. Manuscript submitted to Journal of Sound and Vibration, Spring (2005).

[7]
P. Lancaster and U. Prells: Inverse Problems for Damped Vibrating Systems,. Journal of Sound and Vibration. 283(3-5), May 2005, pp.891-914.

DOI: 10.1016/j.jsv.2004.05.003
[8]
U. Prells and P. Lancaster: Isospectral Vibrating Systems, Part 2: Structure Preserving Transformations,. Operator Theory: Advances and Applications. 163, 2005, pp.275-298.

DOI: 10.1007/3-7643-7516-7_12
[9]
G.M.L. Gladwell and A. Morassi: On Isospectral Rods Horns and Strings,. Inverse Problems. 11(3), June 1995, pp.533-554.

DOI: 10.1088/0266-5611/11/3/004
[10]
G.M.L. Gladwell: Isospectral Systems,. International Journal of Applied Mechanics. 38(5), May 2002, pp.513-520.

[11]
G. Hori: Joint diagonalization and matrix differential equations' in Proceedings of 1999 Intrntl. Symp. on Nonlinear Theory and its Applications (NOLTA, 99), (Hawaii, USA), 1999, pp.675-678.

[12]
J.H. Manton: (2005). A Centroid (Karcher Mean) Approach to the Joint Approximate Diagonalisation Problem: The Real Symmetric Case. Digital Signal Processing. (To Appear).

DOI: 10.1016/j.dsp.2005.06.003
[13]
T. K Caughey and M.E. O'Kelly: Classical normal modes in damped linear systems, Journal of Applied Mechanics, Transactions of the ASME, 32, 1965, pp.583-588.

[14]
W. -H. Steeb and J.A. Louw: Nahm's equations, singular point analysis and Integrability,. Journal of Mathematical Physics, Vol. 27, 1986. pp.2458-2460.

DOI: 10.1063/1.527307
[15]
A.S. Dancer: Nahm's equation and Hyperkahler geometry, Comm. Math. Physics, Vol. 158, 1993. pp.545-568.

[16]
S.D. Garvey: On General Isospectral Flows for Linear Systems,. Keynote address at IOP : Modern Practice in Stress and Vibration Analysis Conf. Glasgow, Sept., 2003. Published in Materials Science Forum 440(4), pp.11-18.

[17]
O. Babelon, B. Denis and M. Talon: Introduction to Classical Integrable Systems,. Cambridge University Press, (2004).

[18]
P. Van Eetvelt: Private Communication to S. Garvey, September (2005).

[19]
V.I. Arnol'd: Ordinary Differential Equations, Springer-Verlag, Edition III, (1992).

[20]
D.H. Bailey: High Precision Software Directory, http: /crd. lbl. gov/~dhbailey/mpdist.

[21]
F. Fasso: The Euler-Poinsot top: A non-commutatively integrable system without global action-angle coordinates, Zeitschrift Fur Angewandte Mathematik Und Physik 47 (6), 1996, pp.953-976.

DOI: 10.1007/bf00920045