Development of the Humanoid Robot LOLA


Article Preview

This paper presents the performance enhanced humanoid robot LOLA which is currently being manufactured. Hardware design, controllers and simulation are based on ex- perience gained during the development of the robot JOHNNIE. The objective of the current research project is to realize a fast, human-like and autonomous walking motion. To enable an optimal design of the robot with respect to lightweight construction, motor and drive sizing, an appropriate simulation model is required. Dynamics simulation is a key tool to develop the hardware and control design properly. For hardware design and detailed dynamic analysis a comprehensive model including motor and gear dynamics is required, while for controller de- sign and stability analysis a simplified model for global system dynamics is sufficient. Both robots are characterized by a lightweight construction. In comparison to JOHNNIE, the new robot LOLA has a modular, multi-sensory joint design with brushless motors. Moreover, the previously purely central electronics architecture is replaced by a network of decentral joint controllers, sensor data acquisition and filtering units and a central PC. The fusion of motor, gear and sensors into a highly integrated mechatronic joint module has several advantages for the whole system, including high power density, good dynamic performance and reliability. Ad- ditional degrees of freedom are introduced in elbow, waist and toes. Linear actuators are used for the knee joints to achieve a better mass distribution in the legs.



Edited by:

Patrick Sean Keogh




H. Ulbrich et al., "Development of the Humanoid Robot LOLA", Applied Mechanics and Materials, Vols. 5-6, pp. 529-540, 2006

Online since:

October 2006




[1] K. Hirai, M. Hirose, and T. Takenaka, The development of Honda humanoid robot, in Proc. IEEE Int. Conf. Rob. Aut. (ICRA), Leuven, Belgium, 1998, pp.1321-1326.

[2] K. Nishiwaki, S. Kagami, J. Kuffner, M. Inaba, and H. Inoue, Humanoid "JSK-H7": Research platform for autonomous behavior and whole body motion, in Proc. Int. Workshop Humanoid and human friendly Robotics (IARP), Tsukuba, Japan, 2002, pp.2-9.


[3] T. Ishida, Y. Kuroki, and J. Yamaguchi, Mechanical system of a small biped entertainment robot, in Proc. IEEE/RSJ Int. Conf. Rob. Sys. (IROS), 2003, pp.1129-1134.


[4] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata, K. Akachi, and T. Isozumi, Humanoid robot HRP-2, in Proc. IEEE Int. Conf. Rob. Aut. (ICRA), New Orleans, USA, 2004, pp.1083-1090.


[5] Y. Ogura, H. Aikawa, H. -O. Lim, and A. Takanishi, Development of a human-like walking robot having two 7-DOF legs and a 2-DOF waist, in Proc. IEEE Int. Conf. Rob. Aut. (ICRA), 2004, pp.134-139.


[6] J. -Y. Kim, I. -W. Park, J. Lee, M. -S. Kim, B. -K. Cho, and J. -H. Oh, System design and dynamic walking of humanoid robot KHR-2, in Proc. IEEE Int. Conf. Rob. Aut. (ICRA), 2005, pp.1443-1448.


[7] Honda Motor Co., Ltd. (2005, Dec) New ASIMO - running at 6km/h. [Online]. Available: http: /world. honda. com/HDTV/ASIMO/New-ASIMO-run-6kmh.

[8] S. Kajita, T. Nagasaki, K. Kaneko, K. Yokoi, and K. Tanie, A hop towards running humanoid biped, in Proc. IEEE Int. Conf. Rob. Aut. (ICRA), 2004, pp.629-635.


[9] F. Pfeiffer, K. L¨offler, M. Gienger, and H. Ulbrich, Sensor and control aspects of biped robot "Johnnie", International Journal of Humanoid Robotics (IJHR), vol. 1, no. 3, pp.481-496, (2004).


[10] J. Perry, Gait Analysis - Normal and Pathological Function, 3rd ed. Slack, (1992).

[11] M. Gienger, Entwurf und Realisierung einer zweibeinigen Laufmaschine, ser. Fortschrittberichte VDI, Reihe 1. D¨usseldorf: VDI-Verlag, 2005, no. Nr. 378.


[12] M. Gienger, K. L¨offler, and F. Pfeiffer, Towards the design of a biped jogging robot, in Proc. IEEE Int. Conf. Rob. Aut. (ICRA), Seoul, Korea, 2001, pp.4140-4145.


[13] T. Buschmann, S. Lohmeier, H. Ulbrich, and F. Pfeiffer, Optimization based gait pattern generation for a biped robot, in Proc. Int. Conf. Humanoid Rob. (Humanoids), Tsukuba, Japan, (2005).


[14] B. Espiau and P. Sardain, The anthropomorphic biped robot BIP 2000, in Proc. IEEE Int. Conf. Rob. Aut. (ICRA), San Francisco, USA, 2000, pp.3997-4002.


[15] K. Nishiwaki, S. Kagami, Y. Kuniyoski, M. Inaba, and H. Inoue, Toe joints that enhance bipedal and fullbody motion of humanoid robots, in Proc. IEEE Int. Conf. Rob. Aut. (ICRA), Washington, USA, 2002, pp.3105-3110.


[16] F. Pfeiffer, Technical aspects of walking, in Walking: Biological and Technical Aspects (CISM Courses and Lectures), ser. CISM Courses and Lectures, F. Pfeiffer and T. Zielinska, Eds. Berlin, Heidelberg, New York: Springer, 2004, vol. 467, pp.119-153.


[17] T. Buschmann, S. Lohmeier, H. Ulbrich, and F. Pfeiffer, Modeling and simulation of a biped robot, in Proc. IEEE Int. Conf. Rob. Aut. (ICRA), Orlando, USA, (2006).


[18] G. Zhang, Speed control of two-inertia system by PI/PID control, IEEE Trans. Ind. Electron., vol. 47, no. 3, pp.603-609, (2000).


[19] A. Nagakubo, Y. Kuniyoshi, and G. Cheng, ETL-humanoid-a high-performance full body humanoid system for versatile actions, in Proc. IEEE/RSJ Int. Conf. Rob. Sys. (IROS), 2001, pp.1087-1092.


[20] G. Hirzinger, N. Sporer, A. Albu-Sch¨affer, M. H¨ahnle, R. Krenn, A. Pascucci, and M. Schedl, DLR's torque-controlled light weight robot III - are we reaching the technological limits now?, in Proc. IEEE Int. Conf. Rob. Aut. (ICRA), vol. 2, Washington, DC USA, 2002, pp.1710-1716.


[21] S. Lohmeier, T. Buschmann, H. Ulbrich, and F. Pfeiffer, Modular joint design for a performance enhanced humanoid robot, in Proc. IEEE Int. Conf. Rob. Aut. (ICRA), Orlando, USA, (2006).


[22] H. Bremer and F. Pfeiffer, Elastische Mehrk¨orpersysteme. Wiesbaden: B.G. Teubner Verlag, 1988, teubner Studienb¨ucher Mechanik.

[23] F. Pfeiffer, Roboterdynamik. Wiesbaden: B.G. Teubner Verlag, 1987, teubner Studienb¨ucher Mechanik.

[24] Real-time Ethernet SERCOS III, IEC/PAS 62410, Sep. (2005).

Fetching data from Crossref.
This may take some time to load.