Chaotic Dynamics of Fractional-Order Liu System

Abstract:

Article Preview

In this paper, we numerically investigate the chaotic behaviors of a new fractional-order system. We find that chaotic behaviors exist in the fractional-order system with order less than 3. The lowest order we find to have chaos is 2.4 in such system. In addition, we numerically simulate the continuances of the chaotic behaviors in the fractional-order system with orders from 2.7 to 3. Our investigations are validated through numerical simulations.

Info:

Periodical:

Edited by:

Qi Luo

Pages:

1327-1331

DOI:

10.4028/www.scientific.net/AMM.55-57.1327

Citation:

X. Gao "Chaotic Dynamics of Fractional-Order Liu System", Applied Mechanics and Materials, Vols. 55-57, pp. 1327-1331, 2011

Online since:

May 2011

Authors:

Export:

Price:

$35.00

[1] R.C. Koeller:J. Appl. Mech., Vol. 51(1984), p.299.

[2] M. Ichise: J. Electroanal Chem., Vol. 33(1971), p.253.

[3] O. Heaviside: Electromagnetic theory. New York: Chelsea; (1971).

[4] M.W. Hirsch and S. Smale: Differential equations: dynamical systems and linear algebra. New York: Academic Press; (1974).

[5] T.T. Hartley, C.F. Lorenzo and Q.H. Killory: IEEE Trans Cirt Syst I: Fund Theory Appl., Vol. 42(1995), p.485.

[6] W.M. Ahmad and J.C. Sprott: Chaos, Solitons & Fractals. Vol. 16(2003), p.339.

[7] W.M. Ahmad: Chaos, Solitons & Fractals. Vol. 25(2005), p.727.

[8] C.G. Li and G.R. Chen: Chaos, Solitons & Fractals. Vol. 22(2004), p.549.

[9] C.G. Li and G.R. Chen: Physica A. Vol. 341(2004), pp.55-61.

[10] P. Arena,R. Caponetto,L. Fortuna and D. Porto: Proceeding of the ECCTD, Budapest, 1997, p.1259.

[11] X. Gao and J.B. Yu: Chaos, Solitons & Fractals. Vol. 24(2005), p.1097.

[12] W.M. Ahmad and A.M. Harb: Chaos, Solitons & Fractals. Vol. 18(2003), p.693.

[13] I. Petras: J. Electrical Engineering. Vol. 53(2002), p.219.

[14] W.M. Ahmad: Chaos, Solitons & Fractals. Vol. 22(2004), p.141.

[15] X. Gao and J.B. Yu: Chaos, Solitons & Fractals. Vol. 26(2005), p.141.

[16] C.G. Li and G.R. Chen and J.B. Yu: Phys Rev E. Vol. 68(2003), 067203.

[17] K.B. Oldham and J. Spanier: The fractional calculus. New York: Academic Press; (1974).

[18] J.H. He: Computer Methods in Applied Mechanics and Engineering. Vol. 167(1998), p.57.

[19] A. Charef, H.H. Sun, Y.Y. Tsao, and B. Onaral: IEEE Trans. Autom Control. Vol. 37(1992), p.1465.

[20] C.X. Liu, T. Liu, L. Liu and K. Liu: Chaos, Solitons & Fractals. Vol. 22 (2004), p.1031.

DOI: 10.1016/j.chaos.2004.02.060

[21] G.R. Chen and J.H. Lv: Dynamics of a class the Lorenz systems: analysis, control and synchronization. Beijing: Science Press; (2003).

In order to see related information, you need to Login.