Microstructure and Characteristics of Ti-Nb-Sn-HA Composite Powder Fabricated by Mechanical Alloying

Abstract:

Article Preview

A novel biocomposite Ti-35wt%Nb-2.5wt%Sn-15wt%HA powders was synthesized by high energy ball mill(HEBM) for various periods of time. The microstructure and characteristics of the milled powder particles were investigated. Results showed that in the composite powders milled for 4h, Ti was still exhibited primary α phase, with the increase of ball milling time up to 8h, Ti transformed into primary β phase and a little α phase, after ball milling for 12h, Ti transformed into β phase fully. the transform temperature was 380.06°C. And TEM and PSD results indicated that nanostructure was obtained after 12h milling..

Info:

Periodical:

Edited by:

Qi Luo

Pages:

886-891

DOI:

10.4028/www.scientific.net/AMM.55-57.886

Citation:

X. P. Wang et al., "Microstructure and Characteristics of Ti-Nb-Sn-HA Composite Powder Fabricated by Mechanical Alloying", Applied Mechanics and Materials, Vols. 55-57, pp. 886-891, 2011

Online since:

May 2011

Export:

Price:

$35.00

[1] M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia. Progress in Materials Science, 54 (2009) 397.

[2] S. Hanada, H. Matsumoto, S. Watanabe. International congress series, 1284(2005) 239.

[3] M Niinomi, T Kobayashi, N Sasaki. Materials Science and Engineering, Volume 100, April 1988, P. 45.

[4] S. Tria, O. Elkedim, W.Y. Li, H. Liao. Journal of Alloys and Compounds, Volume 483, Issues 1-2, 26 August 2009, P. 334.

[5] M. Long, H.J. Rack, Biomaterials 19 (1998) 1621.

[6] M. Niinomi, Biomaterials 24 (2003) 2673.

[7] E. Eisenbarth , D. Velten, M. M. uller, R. Thull, J. Breme. Biomaterials, 25 (2004) 5705.

[8] Mohamed Abdel-Hady, Hiroki Fuwa, Keita Hinoshita, Haruka Kimura, Yoshifumi Shinzato and Masahiko Morinaga. Scripta Materialia, 57 (2007) 1000.

DOI: 10.1016/j.scriptamat.2007.08.003

[9] Jianyu Xiong, Yuncang Li, Xiaojian Wang, Peter Hodgson, Cui'e Wen. Acta Biomaterialia, 4 (2008) (1963).

[10] Alireza Nouri, Xiaobo Chen, Yuncang Li, Yasuo Yamad, Peter D. Hodgson, Cui'e Wen. Materials Science and Engineering A, 485 (2008) 562–570.

DOI: 10.1016/j.msea.2007.10.010

[11] B.L. Wang, Y.F. Zheng, L.C. Zhao. Materials Science and Engineering A, 486 (2008) 146.

[12] A.M. Omran, K.D. Woo, D.K. Kim, D.L. Zhang. Metals And Materials International, 14 (2008) 321.

[13] Y. Zhenatao, Z. Lian, Mater. Sci. Eng. A 438–440 (2006) 391.

[14] Y. Okazaki, Y. Ito, A. Ito, T. Tateishi, in: S.A. Brown, J.E. Lemons (Eds. ), Medical Applications of Titanium and its Alloys: The Material and Biological Issues, ASTM, 1996, p.45.

DOI: 10.1520/stp16069s

[15] C. Suryanarayana, Prog. Mater. Sci. 46 (2001) 1.

[16] L. Lu, M.O. Lai, Mechanical Alloying, Kluwer Academic Publishers, Boston, MA, (1998).

[17] J.B. Fogagnolo, F. Velasco, M.H. Robert, J.M. Torralba, Mater. Sci. Eng. A 342 (2003) 131.

[18] P.S. Goodwin, C.M. Ward-Close, Mater. Sci. Forum 235–238 (1997) 53.

[19] H. Gleiter. Acta Materialia, Volume 48, Issue 1, 1 January 2000, Pages 1.

[20] G. He, M. Hagiwara. Materials Science and Engineering C, 26 (2006) 14.

[21] C.Q. Ning, Y. Zhou. Biomaterials, 25 (2004) 3379.

In order to see related information, you need to Login.