[1]
Roya D, Majid M. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties[J]. Colloid & Sur B: Biointer, 2010, 79(1): 5-18.
[2]
John J. Vajo. Influence of nano-confinement on the thermodynamics and dehydrogenation kinetics of metal hydrides[J]. Curren Opit in Sol Stat & Mat Sci, 2011, 15(2): 52-61.
[3]
Perrine B, Eric P, Luc A. Nano-biocomposites: Biodegradable polyester/nanoclay systems[J], Prog in Pol Sci, 2009, 34(2): 125-155.
[4]
Rianne S. Electromagnetic fields and the blood–brain barrier[J]. Brain Res Rev, 2010, 65(1): 80-97.
[5]
Olle J. Disturbance of the immune system by electromagnetic fields—A potentially underlying cause for cellular damage and tissue repair reduction which could lead to disease and impairment[J]. Pathophy, 2009, 16(2-3): 157-177.
DOI: https://doi.org/10.1016/j.pathophys.2009.03.004
[6]
Stephen J. G. Fielding a current idea: exploring the public health impact of electromagnetic radiation[J]. Public Health, 2008, 122(2): 113-124.
DOI: https://doi.org/10.1016/j.puhe.2007.04.008
[7]
Shafey T. M, Aljumaah R. S, Swillam S. A, et al. Effects of short term exposure of eggs to magnetic field before incubation on hatchability and post-hatch performance of meat chickens[J]. Saudi J of Biologi Sci, 2011, 18(4): 381-386.
DOI: https://doi.org/10.1016/j.sjbs.2011.06.004
[8]
Hiroshi S, Tatsushi T, Yuko I. Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis[J]. Environ Sci Technol, 2007, 41(8): 3018-3024.
DOI: https://doi.org/10.1021/es0625632
[9]
Conrad C, Paras N, John S. In vitro uptake of gelatin nanoparticles by murine dendritic cells and their intracellular localization[J]. Europ J Pharmac & Biopharmac, 2006, 62: 306-314.
[10]
Jonas E. Contributions of Bcl-xL to acute and long term changes in bioenergetics during neuronal plasticity[J]. Biochim Biophys Acta, 2013, S0925-4439(13): 332-343.
[11]
Mangwani N, Shukla S. K, Rao T. S, et al. Calcium-mediated modulation of Pseudomonas mendocina NR802 biofilm influences the phenanthrene degradation[J]. Colloids Surf B Biointerfaces, 2013, 114C: 301-309.
DOI: https://doi.org/10.1016/j.colsurfb.2013.10.003
[12]
Vostrikov V. V, Mote K. R, Verardi R, et al. Structural Dynamics and Topology of Phosphorylated Phospholamban Homopentamer Reveal Its Role in the Regulation of Calcium Transport[J]. Structure, 2013, S0969-2126(13): 358-344.
DOI: https://doi.org/10.1016/j.str.2013.09.008
[13]
Antoni W. J, Vasanthi N. Phosphate transporter mediated lipid accumulation in Saccharomyces cere- visiae under phosphate starvation conditions[J]. Biores Technol, 2014, 151: 100-105.
DOI: https://doi.org/10.1016/j.biortech.2013.10.054
[14]
Mariame A. H, Paul C, Takashi K. The role of Ca2+ in ultrasound-elicited bioeffects: progress, perspectives and prospects[J]. Drug Discov Today, 2010, 15(21–22): 892-906.
DOI: https://doi.org/10.1016/j.drudis.2010.08.005
[15]
Hutcheson J. D, Schlicher R. K, Hicks H. K, et al. Saving Cells from Ultrasound-Induced Apoptosis: Quantification of Cell Death and Uptake Following Sonication and Effects of Targeted Calcium Chelation[J]. Ultras Medic & Bio, 2010, 36(6): 1008-1021.
DOI: https://doi.org/10.1016/j.ultrasmedbio.2010.03.011
[16]
Le Y, Shuwen L. Autophagy contributes to modulating the cytotoxicities of Bcl-2homology domain-3 mimetics[J]. Semin Cancer Bio Part B, 2013, 23(6): 553-560.
[17]
Sudeshna C, Barick K. C, Bahadur D. Oxide and hybrid nanostructures for therapeutic applications[J]. Advan Drug Del Revi, 2011, 63(14-15): 1267-1281.
DOI: https://doi.org/10.1016/j.addr.2011.06.003
[18]
Arthur A. P. Electromagnetic fields instantaneously modulate nitric oxide signaling in challenged biological systems[J]. Biochem & Biophy Res Comm, 2012, 426(3): 330-333.
DOI: https://doi.org/10.1016/j.bbrc.2012.08.078