An Analytical Model of Homogeneous Charge Compression Ignition Engine for Performance Prediction


Article Preview

A zero dimensional thermodynamic model simulation is developed to simulate the combustion characteristics and performance of a four stroke homogeneous compression combustion ignition (HCCI) engine fueled with gasoline. This model which applies the first law of thermodynamics for a closed system is inclusive of empirical model for predicting the important parameters for engine cycles: the combustion timing and mass burnt fraction during the combustion process. The hypothesis is the increasing intake temperature can reduce the combustion duration and the fuel consumption at wide range of equivalence ratio. The intake temperature were increased from 373-433 K with increment of 20 K. The engine was operated over a range of equivalence ratios of 0.2 to 0.5 at constant engine speed of 1200 rpm and intake pressure of 89,950 k Pa. Simulations were performed using Simulink® under different engine operating conditions. Increasing intake temperature allows reducing the combustion duration by 0.99 °CA and 0.26 °CA at equivalence ratios of 0.2 and 0.5, respectively. The brake specific fuel consumption decreases about 6.09%-5.76% at 0.2-0.5 of equivalence ratios. Thus, fuel consumption can be reduced by increasing intake temperature.



Edited by:

Zamir A. Zulkefli, Mohd Sapuan Salit, Suraya Mohd Tahir, Yousuf El-Shekeil, Mohamad Ridzwan Ishak, Abdul Aziz Hairuddin, Azizan As'arry, Khairil Fadzli Abu Bakar and Radhiyah Khalid




A. R. Najihah et al., "An Analytical Model of Homogeneous Charge Compression Ignition Engine for Performance Prediction", Applied Mechanics and Materials, Vol. 564, pp. 8-12, 2014

Online since:

June 2014




* - Corresponding Author

[1] M. Yao, Z. Zheng, and H. Liu in: Progress in Energy dan Combustion Science 35, (2009) pp.398-4.

[2] B. Johansson: International Journal of Vehicle Design, 44 (1-2) (2007), pp.1-19.

[3] H. I. Sherazi and Y. Li in: International Conference on Automation & Computing, University of Huddersfield, (2010) pp.315-320.

[4] H. Zhao in: Homogeneous Charge Compression Ignition (HCCI) and Controlled Auto Ignition (CAI) Engines for the Automotive Industry. Wood-head Publishing Ltd, (2007).

[5] D.J. Rausen and A.G. Stefanopoulou: Journal of Dynamic Systems, Measurement and Control, Vol. 127 (2005), pp.355-362.

[6] Information on http: /www. engr. colostate. edu/~allan/thermo/page2/page2. html.

[7] H. Guo, W. S. Neil, W. Chippior, H. Li and J. D. Taylor: Journal of Engineering for Gas Turbines and Power (2010).

[8] R. K. Maurya and A. K. Agarwal: Automobile Engineering, (2009), p.2041-(2091).

Fetching data from Crossref.
This may take some time to load.