Analysis of the Dynamic Behavior of a Moving Crack in FGMs Using Non-Local Theory

Abstract:

Article Preview

A theoretical and numerical study has been conducted to investigate the dynamic crack propagation in functionally graded materials (FGMs) by making use of non-local theory. The variation of the shear modulus and mass density of the FGMs are modeled by a exponential increase along the direction perpendicular to the crack surface. The Poisson’s ratio is assumed to be constant. The mixed boundary value problem is reduced to a pair dual integral equations through Fourier. In solving the dual integral equations, the crack surface displacement is expanded in a series using Jacobi’s polynomials and Schmidt’s method is used. Contrary to the classical elasticity solution, the crack-tip stress fields does not retains the inverse square root singularity. The analysis revals that the peak values of crack-tip stress increase with the the crack velocity as characteristic length is decreased.

Info:

Periodical:

Edited by:

Qi Luo

Pages:

186-191

DOI:

10.4028/www.scientific.net/AMM.58-60.186

Citation:

X. S. Bi et al., "Analysis of the Dynamic Behavior of a Moving Crack in FGMs Using Non-Local Theory", Applied Mechanics and Materials, Vols. 58-60, pp. 186-191, 2011

Online since:

June 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.