Growth of Rutile TiO2 Nanorods by Chemical Bath Deposition Method on Silicon Substrate at Different Annealing Temperature

Abstract:

Article Preview

Effects of annealing treatment on growth of rutile TiO2 nanorods on structural, morphological and optical properties of TiO2 nanorods were investigated. The nanorods were fabricated on p-type (111)-oriented silicon substrates and, all substrates were seeded with a TiO2 seed layer synthesized by radio-frequency reactive magnetron sputtering system. Chemical bath deposition (CBD) was carried out to grow rutile TiO2 nanorods on Si substrate at different annealing temperatures (350, 550, 750, and 950 °C). Raman spectroscopy, X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) analyses showed the tetragonal rutile structure of the synthesized TiO2 nanorods. Optical properties were examined by photoluminescence spectroscopy. The spectra exhibit one strong UV emission peak which can be seen at around 390 nm for all of the samples. In the visible region, TiO2 demonstrated two dominant PL emissions centered at around 519 and 705 nm. The experimental results showed that the TiO2 nanorods annealed at 550 °C exhibited the optimal structural properties. Moreover, the CBD method enabled the formation of photosensitive, high-quality rutile TiO2 nanorods with few defects for future optoelectronic nanodevice applications.

Info:

Periodical:

Edited by:

Li Qiang

Pages:

129-133

Citation:

A. M. Selman and Z. Hassan, "Growth of Rutile TiO2 Nanorods by Chemical Bath Deposition Method on Silicon Substrate at Different Annealing Temperature", Applied Mechanics and Materials, Vol. 624, pp. 129-133, 2014

Online since:

August 2014

Export:

Price:

$38.00

* - Corresponding Author

[1] C. Xiong, X. Deng, J. Li, Appl. Catal., B: Environmental 94 (2010) 234–240.

[2] M.V. Diamanti, M. Ormellese, E. Marin, A. Lanzutti, A. Mele, M.P. Pedeferri, J. Hazard. Mater. 186 (2011) 2103–2109.

[3] S. K. Gupta, J. Singh, K. Anbalagan, P. Kothari, R. Bhatia, P. K. Mishra,V. Manjuladevi, R. K. Gupta, J. Akhtar, Appl. Surf. Sci. 264 (2013) 737–742.

DOI: https://doi.org/10.1016/j.apsusc.2012.10.113

[4] Y. Zhai, Q. Zhang, F. Liu, G. Gao, Mater. Lett. 62 (2008) 4563–4565.

[5] C. Chou, R. Yang, M. Weng, C. Yeh, Powder Technol. 187 (2008) 181–189.

[6] C. Wang, Z. Jiang, L. Wei, Y. Chen, J. Ji, M. Eastman, H. Liu, Nano Energy 1 (2012) 440–447.

[7] R. N. Bulakhe, S.V. Patil, P. R. Deshmukh, N. M. Shinde, C.D. Lokhande, Sens. Actuators, B 181 (2013) 417– 423.

[8] V. Caratto, B. Aliakbarian, A. A. Casazza, L. Setti, C. Bernini, P. Perego, M. Ferretti, Mater. Res. Bull. 48 (2013) 2095–2101.

[9] A. M. Selman, Z. Hassan, M. Husham, N. M. Ahmed, Appl. Surf. Sci. 305 (2014) 445–452.

[10] L. Bergamonti, I. Alfieri, A. Lorenzi, A. Montenero, G. Predieri, G. Barone, P. Mazzoleni, S. Pasquale, P. P. Lottici , Appl. Surf. Sci. 282 (2013) 165– 173.

DOI: https://doi.org/10.1016/j.apsusc.2013.05.095

[11] A. M. Ali, S. R. Sani, J Nanostructure Chem. 3 (2013) 35.

[12] M. Sung Wu, C. Hsiu , T. Chien Wei, Chem. Commun. 47 (2011) 2871–2873.

[13] V. G. Bessergenev, R. Pereira, M. C. Mateus, I.V. Khmelinskii, D. A. Vasconcelos, R. Nicula, E. Burkel, Thin Solid Films 503 (2006) 29 – 39.

DOI: https://doi.org/10.1016/j.tsf.2005.10.046

[14] M. Krivec, R. A. Segundo, J. L. Faria, A. M. T. Silva, G. Drazi, Appl. Catal., B, 140– 141 (2013) 9– 15.

[15] X. Ren, K. Senapati, W. Jiang, C. H. Jiang, Mater. Chem. Phys. 126 (2011)1–5.

[16] U. M. Patil, S. B. Kulkarni, P. R. Deshmukh, R. R. Salunkhe, C. D. Lokhande, J. Alloys Compd. 509 (2011) 6196–6199.

[17] Y. Zhao, X. GU, Y. Qiang, thin solid films, 520 (2012) 2814–2818.

[18] M. Vishwas, K. Narasimha Rao, R.P.S. Chakradhar, Spectrochim. Acta, Part A: 99 (2012) 33–36.

[19] M. Xia, Y. Wang, H. Li, Y. Zeng, B. Qu, F. Wang, A. Pan, B. Zou, Q. Zhang , Y. Wang, Mater. Lett. 64 (2010) 2392–2394.

[20] H. J. Kwon, Y. W. Lee, H. S. Kim, C. K. Zhoh, K. W. Park, Mater. Lett. 93 (2013) 175–178.

[21] J. Jiu, S. Isoda, F. Wang, M. Adachi, J. Phys. Chem. B 110 (2006) (2087).

[22] X. Shen, J. Zhang, B. Tian J. Hazard. Mater. 192 (2011) 651–657.

[23] J. J. Yuan, H. D. Li, S.Y. Gao, D. D. Sang, L.A. Li, D. Lu, Mater. Lett. 64 (2010) 2012–(2015).

[24] J. Preclıkov, P. Galar, F. Trojanek, B. Rezek, Y. Nemcov, P. Maly, J. Appl. Phys. 109 (2011) 083528.

[25] M. Vishwas, K. N. Rao, R.P.S. Chakradhar , Spectrochim. Acta, Part A 99 (2012) 33–36.

[26] I. Lee, T. Jung, J. Kim, S. Ro, C. Kim, Y. Lee,Y. Kim, J. Lee, M. Kang, J. Ind. Eng. Chem. 14 (2008) 869–873.

[27] W. Zhang, J. Zhao, Z. Liu, Z. Liu, Z. Fu b, Appl. Surf. Sci. 256 (2010) 4423– 4425.

[28] A. Hu, C. Cheng, X. Li, J. Jiang, R. Ding, J. Zhu, F. Wu, J. Liu, X. Huang, Nanoscale Res. Lett.  2011, 6: 91.