Exchange Bias of the Fe/Fe3O4 Coated Ag/Hollow Glass Microspheres

Abstract:

Article Preview

This paper presents an investigation of the exchange bias of the Fe/Fe3O4 layer deposited on the Ag/hollow glass microspheres. The results show that exchange bias is affected by different thickness of Fe3O4 layer which is caused by different reaction time. The exchange bias field (HE) increases gradually with increasing reaction time, and achieves maximum value when the reaction time reaches 30min; after that, it decreases. It is also found that the changes of exchange bias field (HE) are proposed to the frozen interfacial spins and the structural lattice disorder

Info:

Periodical:

Edited by:

Li Qiang

Pages:

157-160

Citation:

A. Li et al., "Exchange Bias of the Fe/Fe3O4 Coated Ag/Hollow Glass Microspheres", Applied Mechanics and Materials, Vol. 624, pp. 157-160, 2014

Online since:

August 2014

Export:

Price:

$38.00

* - Corresponding Author

[1] M. Ali, P. Adie, C.H. Marrows1, D. Greig, B.J. Hickey, R.L. Stamps, Exchange bias using a spin glass, J. Nature Materials 6 (2007) 70-75.

DOI: https://doi.org/10.1038/nmat1809

[2] S. Brück, G. Schütz, E. Goering, X. Ji, K.M. Krishnan, Uncompensated moments in the MnPd/Fe exchange bias system, J. Phys. Rev. Lett. 101 (2008) 126402.

DOI: https://doi.org/10.1103/physrevlett.101.126402

[3] X. Yuan, X. Xue, X. Zhang, Z. Wen, M. Yang, J. Du, D. Wu, Q. Xu, The exchange bias in polycrystalline BiFeO3/Ni81Fe19 bilayers on Si substrate with LaNiO3 buffer layer, J. Solid State Communications 152 (2012) 241-243.

DOI: https://doi.org/10.1016/j.ssc.2011.12.004

[4] T. Hauguel, S.P. Pogossian, D.T. Dekadjevi, D. Spenato, J. Jay, M.V. Indenbom, J.B. Youssef, Experimental evidence for exchange bias in polycrystalline BiFeO3/Ni81Fe19 thin films, J. Journal of Applied Physics 110 (2011) 073906.

DOI: https://doi.org/10.1063/1.3636098

[5] K. Takano, R.H. Kodama, A.E. Berkowitz, W. Cao, G. Thomas, Interfacial uncompensated antiferromagnetic spins: role in unidirectional anisotropy in polycrystalline Ni81Fe19/CoO bilayers, J. Phys. Rev. Lett. 79 (1997) 1130.

DOI: https://doi.org/10.1103/physrevlett.79.1130

[6] W. Baaziz, B.P. Pichon, C. Lefevre, C. Ulhaq-Bouillet, J. Greneche, M. Toumi, T. Mhiri, S. Bégin-Colin, High Exchange Bias in Fe3− δO4@ CoO Core Shell Nanoparticles Synthesized by a One-Pot Seed-Mediated Growth Method, J. The Journal of Physical Chemistry C 117 (2013).

DOI: https://doi.org/10.1021/jp402823h

[7] K. Chakrabarti, B. Sarkar, V.D. Ashok, K. Das, S.S. Chaudhuri, A. Mitra, S.K. De, Exchange bias effect in BiFeO3-NiO nanocomposite, J. Journal of Applied Physics 115 (2014) 013906.

DOI: https://doi.org/10.1063/1.4861140

[8] Z. An, J. Zhang, S. Pan, Low-density core–shell composite hollow microspheres with tunable magnetic properties, J. Journal of Physics and Chemistry of Solids 70 (2009) 1083-1088.

DOI: https://doi.org/10.1016/j.jpcs.2009.06.004

[9] P.J. van der Zaag, A.R. Ball, L.F. Feiner, R.M. Wolf, P.A.A. van der Heijden, Exchange biasing in MBE grown Fe3O4/CoO bilayers: The antiferromagnetic layer thickness dependence, J. Journal of applied physics 79 (1996) 5103-5105.

DOI: https://doi.org/10.1063/1.361315

[10] Q.K. Ong, X. Lin, A. Wei, Role of Frozen Spins in the Exchange Anisotropy of Core-Shell Fe@ Fe3O4 Nanoparticles, J. The Journal of Physical Chemistry C 115 (2011) 2665-2672.

DOI: https://doi.org/10.1021/jp110716g