Effects of Intercalated Mono-, Di- and Triethanolammonium Cations on the Structural and Surface Characteristics of Sodium Form of Bentonite


Article Preview

The present study investigates the effects of intercalation process of protonated primary, secondary and tertiary amines on structural and surface characteristics of sodium form of bentonite clay. For this purpose, sodium form of bentonite clay was prepared and then exchanged with mono-, di-and triethanolammonium cations via intercalation mechanism into the interlayer space of the clay. The prepared samples were characterized by XRD and BET techniques. An increase in the d-spacing of bentonite clay with the molar mass of amines was observed in their x-ray diffractograms, following the order of: triethanolamine > diethanolamine > monoethanolamine. The BET results showed a gradual decrease in the BET surface area with the increase in the molar mass of amines used. Based on the results obtained, it can be concluded that the molar mass of amines has significant effects on structural and surface properties of bentonite clay.



Edited by:

Iqbal Ahmed




A. E.I. Elkhalifah et al., "Effects of Intercalated Mono-, Di- and Triethanolammonium Cations on the Structural and Surface Characteristics of Sodium Form of Bentonite", Applied Mechanics and Materials, Vol. 625, pp. 98-101, 2014

Online since:

September 2014




* - Corresponding Author

[1] L. A. Utracki, Clay-containing polymeric nanocomposites vol. 1: iSmithers Rapra Publishing, (2004).

[2] A. Weiss, Organic derivatives of clay minerals, zeolites and related minerals, Organic Geochemistry, vol. 19969, (1969).

DOI: https://doi.org/10.1007/978-3-642-87734-6_38

[3] M. Mortland, Clay-organic complexes and interactions, Advances in Agronomy, vol. 22, (1970).

[4] B. K. G. Theng, The chemistry of clay-organic reactions, The Chemistry of Clay-Organic Reactions., (1974).

[5] B. K. G. Theng, Formation and properties of clay-polymer complexes vol. 9: Elsevier, (1979).

[6] S. Yariv and H. Cross, Geochemistry of colloid systems for earth scientists: Springer-Verlag New York, (1979).

[7] J. Rausell-Colom and J. Serratosa, Reactions of clays with organic substances, Monograph, Mineralogical Society, (1987).

[8] G. Lagaly, Reaktionen der Tonminerale, Tonminerale und Tone, pp.89-167, (1993).

DOI: https://doi.org/10.1007/978-3-642-72488-6_3

[9] A. Tabak, B. Afsin, S. Aygun and E. Koksal, Structural characteristics of organo-modified bentonites of different origin, J. Therm. Anal. Calorim. 87 (2007) 377-382.

DOI: https://doi.org/10.1007/s10973-006-7886-6

[10] F. Bergaya, B. K. G. Theng and G. Lagaly, Handbook of clay science vol. 1: Elsevier Science, (2006).

[11] Y. Xi, Z. Ding, H. He and R. L. Frost, Infrared spectroscopy of organoclays synthesized with the surfactant octadecyltrimethylammonium bromide, J. Spectrochim. Act. Part A: Molec. Biomolec. Spectro. 61 (2005) 515-525.

DOI: https://doi.org/10.1016/j.saa.2004.05.001

[12] K. G. Satyanarayana, Clay surfaces: fundamentals and applications vol. 1: Academic Press, (2004).

[13] A. E. Elkhalifah, M. A. Bustam, and T. Murugesan, Thermal properties of different transition metal forms of montmorillonite intercalated with mono-, di-, and triethanolammonium compounds. J Therm Anal Calorim. 112 (2013) 929-35.

DOI: https://doi.org/10.1007/s10973-012-2657-z

[14] A. E. Elkhalifah, S. Maitra, M. A. Bustam, and T. Murugesan, Thermogravimetric analysis of different molar mass ammonium cations intercalated different cationic forms of montmorillonite. J Therm Anal Calorim. 110 (2012) 765-71.

DOI: https://doi.org/10.1007/s10973-011-1977-8

[15] A. E. Elkhalifah, S. Maitra, M. A. Bustam, T. Murugesan, Effects of exchanged ammonium cations on structure characteristics and CO2 adsorption capacities of bentonite clay. J Appl Clay Sci. 83 (2013) 391-98.

DOI: https://doi.org/10.1016/j.clay.2013.07.016

[16] B. Theng, D. Greenland and J. Quirk, Adsorption of alkylammonium cations by montmorillonite, J. Clay Miner. 7 (1967) 1-17.

[17] J. Lee and H. Lee, Characterization of organo-bentonite used for polymer nanocomposites, J. Mater. Chem. Phys. 85 (2004) 410-415.

[18] F. C. Huang, J. F. Lee, C. K. Lee and H. P. Chao, Effects of cation exchange on the pore and surface structure and adsorption characteristics of montmorillonite, J. Collo. Surf. A: Physicochem. Eng. Aspec. 239 (2004) 41-47.

[19] R. K. Kukkadapu and S. A. Boyd, Tetramethylphosphonium- and tetramethylammonium-smectites as adsorbents of aromatic and chlorinated hydrocarbons: effect of water on adsorption efficiency, J. Clays and Clay Miner., vol. 43, pp.318-323, (1995).

DOI: https://doi.org/10.1346/ccmn.1995.0430306