Sliding Mode Control Techniques for Combined Energy and Attitude Control System

Abstract:

Article Preview

Combined Energy and Attitude Control System (CEACS) is an optimization approach that combines the energy storage system and the attitude control system. With a double counter rotating flywheel simultaneously serving as energy storage device and as attitude control actuator, CEACS requires an accurate control strategy to obtain the mission requirements. In addition, it is important to design the control law to be invariant to uncertainties and disturbances, and guarantee robustness as CEACS inherits these in-orbit uncertainties. This paper presents a nonlinear control employing sliding mode to enhance the CEACS attitude control capability. The mathematical model for the conventional and boundary layer sliding mode controls are developed herein for CEACS. The controller provides enhancement in pointing accuracies, reasonable transient responses and a robustness against uncertainties and in-orbit disturbances.

Info:

Periodical:

Edited by:

R. Varatharajoo, F.I. Romli, K.A. Ahmad, D.L. Majid and F. Mustapha

Pages:

310-317

Citation:

S. Eshghi and R. Varatharajoo, "Sliding Mode Control Techniques for Combined Energy and Attitude Control System", Applied Mechanics and Materials, Vol. 629, pp. 310-317, 2014

Online since:

October 2014

Export:

Price:

$38.00

* - Corresponding Author

[1] D. A. Bearden, Small-satellite costs, Crosslink, vol. 2, pp.32-44, (2001).

[2] P. A. Curto and R. S. Hornstein, Injection of new technology into space systems, Acta Astronautica, vol. 57, pp.490-497, (2005).

DOI: https://doi.org/10.1016/j.actaastro.2005.03.009

[3] R. Sandau, Status and trends of small satellite missions for Earth observation, Acta Astronautica, vol. 66, pp.1-12, (2010).

[4] R. Varatharajoo, Onboard errors of the combined energy and attitude control system, Acta Astronautica, vol. 58, pp.561-563, (2006).

DOI: https://doi.org/10.1016/j.actaastro.2006.01.011

[5] Y. S. Ban, R. Varatharajoo, and M. Ovchinnikov, H2 optimal control solution for a combined energy and attitude control system, Acta Astronautica, vol. 76, pp.79-83, (2012).

DOI: https://doi.org/10.1016/j.actaastro.2012.02.013

[6] I. M. Mehedi, R. Varatharajoo, H. Harun, and M. N. Filipski, Architecture for combined energy and attitude control system, American Journal of Applied Sciences, vol. 2, pp.430-435, (2005).

DOI: https://doi.org/10.3844/ajassp.2005.430.435

[7] R. Varatharajoo and M. N. F. Abdullah, Attitude Performance of the Spacecraft Combined Energy and Attitude Control System, Journal of the British Interplanetary Society, vol. 57, pp.237-241, (2004).

[8] Y. S. Ban and R. Varatharajoo, H∞ control option for a combined energy and attitude control system, " Advances in Space Research, vol. 52, pp.1378-1383, (2013).

[9] R. Varatharajoo and S. Fasoulas, Methodology for the development of combined energy and attitude control systems for satellites, Aerospace science and technology, vol. 6, pp.303-311, (2002).

[10] K. D. Young, V. I. Utkin, and U. Ozguner, A control engineer's guide to sliding mode control, in Variable Structure Systems, 1996. VSS'96. Proceedings., 1996 IEEE International Workshop on, 1996, pp.1-14.

[11] O. Kaynak, K. Erbatur, and M. Ertugnrl, The fusion of computationally intelligent methodologies and sliding-mode control-a survey, IEEE Transactions on Industrial Electronics, vol. 48, pp.4-17, (2001).

DOI: https://doi.org/10.1109/41.904539

[12] J. J. E. Slotine and W. Li, Applied nonlinear control. 1991, NJ: Prantice-Hall, Englewood Cliffs, (1991).

[13] C. Vecchio, M. Tanelli, M. Corno, A. Ferrara, and S. M. Savaresi, Second order sliding mode for traction control in ride-by-wire sport motorcycles, in American Control Conference, 2009. ACC'09., 2009, pp.3344-3349.

[14] J. Chiou, M. -C. Hwang, S. Wuf, and J. Yang, Robust attitude control of spacecraft using sliding mode control and productive networks, International journal of systems science, vol. 28, pp.435-446, (1997).

DOI: https://doi.org/10.1080/00207729708929405

[15] A. Mohammad and S. S. Ehsan, Fuzzy sliding mode controller design for spacecraft attitude tracking in terms of quaternion, in Control Conference, 2008. CCC 2008. 27th Chinese, 2008, pp.753-757.

DOI: https://doi.org/10.1109/chicc.2008.4605497

[16] R. Varatharajoo, Operation for the combined energy and attitude control system, Aircraft Engineering and Aerospace Technology: An International Journal, vol. 78, pp.495-501, (2006).

DOI: https://doi.org/10.1108/00022660610707166

[17] M. J. Sidi, Spacecraft dynamics and control: a practical engineering approach vol. 7: Cambridge university press, (2000).

[18] M. Ataei and E. Shafiei S, Fuzzy sliding mode controller design for spacecraft attitude tracking in terms of quaternion, 2008. CCC 2008. 27th Chinese Control Conference, 2008, pp.753-757.

DOI: https://doi.org/10.1109/chicc.2008.4605497