Effect of Sintering Temperature on Functionally Graded Nickel/Alumina Plate

Abstract:

Article Preview

Functionally graded material that consists of gradually changed dual-phase compositions along the thickness direction of its structure has been introduced as an answer to sharp interfaces problems occur while the processing. In order to observe the morphological and shrinkage due to the sintering process, the Ni/Al2O3 FG samples were manufactured via powder metallurgy routes under argon atmosphere. This study reveals that the sintering temperature does affects the sintering behaviors including the microstructures and radial dimensions of the FG plates. The numerical simulation is found to be useful to predict the stress concentration area within the structures and consequently improve the design of the FG plates.

Info:

Periodical:

Edited by:

R. Varatharajoo, F.I. Romli, K.A. Ahmad, D.L. Majid and F. Mustapha

Pages:

437-443

Citation:

M. I. A. Latiff et al., "Effect of Sintering Temperature on Functionally Graded Nickel/Alumina Plate", Applied Mechanics and Materials, Vol. 629, pp. 437-443, 2014

Online since:

October 2014

Export:

Price:

$38.00

* - Corresponding Author

[1] M. Bhattacharyya, A.N. Kumar, S. Kapuria, Synthesis and characterization of Al/SiC and Ni/Al2O3 functionally graded materials, Mater. Sci. Eng. A487 (2008) 524-535.

DOI: https://doi.org/10.1016/j.msea.2007.10.040

[2] B. Ferrari, A.J. S'anchez-Herencia, R. Moreno, Nickel-alumina graded coatings obtained by dipping and EPD in nickel substrates, J. Eur. Ceram. Soc. 26 (2006) 2205-2212.

DOI: https://doi.org/10.1016/j.jeurceramsoc.2005.04.009

[3] V.G. Karayannis, A.K. Moutsatsou, Synthesis and characterization of nickel-alumina composites from recycled nickel powder, Adv. Mater. Sci. Eng., Article ID 395612 (2012) p.9.

DOI: https://doi.org/10.1155/2012/395612

[4] Y.M. Shabana, H.A. Bruck, M.L. Pines, J.G. Kriff, Modeling the evolution of stress due to differential shrinkage in powder-processed functionally graded metal-ceramic composites during pressureless sintering, Int. J. Solid Struc. 43 (2006).

DOI: https://doi.org/10.1016/j.ijsolstr.2006.04.003

[5] H.X. Zhu, R. Abbaschian, Microstructures and properties of in-situ NiAl-Al2O3 functionally gradient composites, Compos. Part B31 (2000) 383-390.

DOI: https://doi.org/10.1016/s1359-8368(00)00017-2

[6] S-H. Ryu, J-H. Park, C.S. Lee, J-C. Lee, S-H. Ahn, S-T. Oh, Experimental measurement of coefficient of thermal expansion for graded layers in Ni-Al2O3 FGM joints for accurate residual stress analysis, Mater. Trans. 50 6 (2009) 1553-1557.

DOI: https://doi.org/10.2320/matertrans.m2009028

[7] S.N.S. Jamaludin, F. Mustapha, D.M. Nuruzzaman, T.M.Y.T. Ya, S. Basri, Finite element calculation of residual thermal stress for functionally graded Hydroxyapatite-Titanium plate design, APJES I-II (2013) 1-10.

DOI: https://doi.org/10.5505/apjes.2013.10820

[8] J.H. Park, J.C. Lee, S.H. Ryu, K.B. Jung, H-B. Song, J.C. Yun, Y.H. Choa, S.H. Ahn, C.S. Lee, Crack-free joint of Ni/Al2O3 FGM system using three-dimensional modeling, Mater. Trans. 50 7 (2009) 1875-1880.

DOI: https://doi.org/10.2320/matertrans.m2009041

[9] J.N. Reddy, Analysis of functionally graded plates, Int. J. Numer. Method. Eng. 47 (2000) 663–684.

[10] S. Yang, H. Kim, C.S. Lee, Investigation of shrinkage control in Ni-Al2O3 (metal-ceramic) functionally graded materials, Ceram. Int. 39 (2013) 93-99.

DOI: https://doi.org/10.1016/j.ceramint.2012.05.100

[11] M.L. Pines, H.A. Bruck, Pressureless sintering of particle-reinforced metal-ceramic composites for functionally graded materials: Part 1. Porosity reduction models, Acta Mater. 54 (2006) 1457-1465.

DOI: https://doi.org/10.1016/j.actamat.2005.10.060