Influence of Mechanical Vibration Moulding Process on the Tensile Properties of TiC Reinforced LM6 Alloy Composite Castings

Abstract:

Article Preview

Vibrational moulding process has a remarkable effect on the properties of castings during solidification processing of metals, alloys, and composites. This research paper discusses on the investigation of mechanical vibration mould effects on the tensile properties of titanium carbide particulate reinforced LM6 aluminium alloy composites processed with the frequencies of 10.2 Hz, 12 Hz and 14 Hz. In this experimental work, titanium carbide particulate reinforced LM6 composites were fabricated by carbon dioxide sand moulding process. The quantities of titanium carbide particulate added as reinforcement in the LM6 alloy matrix were varied from 0.2% to 2% by weight fraction. Samples taken from the castings and tensile tests were conducted to determine the tensile strength and modulus of elasticity. The results showed that tensile strength of the composites increased with an increase in the frequency of vibration and increasing titanium carbide particulate reinforcement in the LM6 alloy matrix.

Info:

Periodical:

Edited by:

Honghua Tan

Pages:

1207-1212

DOI:

10.4028/www.scientific.net/AMM.66-68.1207

Citation:

M. Sayuti et al., "Influence of Mechanical Vibration Moulding Process on the Tensile Properties of TiC Reinforced LM6 Alloy Composite Castings", Applied Mechanics and Materials, Vols. 66-68, pp. 1207-1212, 2011

Online since:

July 2011

Export:

Price:

$35.00

[1] Warren H. Hunt, J : Materials Science Forum, 2000. 331-337: pp.71-74.

[2] Sulaiman, S., M. Sayuti, and R. Samin : Journal of Materials Processing Technology, 2008. 201(1-3): pp.731-735.

[3] Tottle, C.R., An Encyclopaedia of Metallurgy and Materials. 1985, : The Institute of Metals, Macdonald & Evans Ltd, Plymouth, UK.

[4] A. Taha, M : Journal of Material and Design, 2001. 22(431-441).

[5] Kocatepe, K. and C.F. Burdett : Journal of Materials Science, 2000. 35(13): pp.3327-3335.

[6] Abu-Dheir, N., Khraisheh, M., Saito, K., and Male, A. : Materials Science and Engineering A, 2005. 393(1-2): pp.109-117.

[7] Kocatepe, K : Materials & Design, 2007. 28(6): pp.1767-1775.

[8] Limmaneevichitr, C., S. Pongananpanya, and J. Kajornchaiyakul : Materials & Design, 2009. 30(9): pp.3925-3930.

DOI: 10.1016/j.matdes.2009.01.036

[9] Chirita, G., Stefanescu, I., Soares, D., and Silva, F. S : Materials & Design, 2009. 30(5): pp.1575-1580.

[10] Gao, D., Li, Z., Han, Q., and Zhai, Q : Materials Science and Engineering: A, 2009. 502(1-2): pp.2-5.

[11] Karantzalis, A.E., S. Wyatt, and A.R. Kennedy : Materials Science and Engineering A, 1997. 237(2): pp.200-206.

[12] Selcuk, C. and A.R. Kennedy : Materials Letters, 2006. 60(28): pp.3364-3366.

[13] Miller, W.S. and F.J. Humphreys : Scripta Metallurgica et Materialia, 1991. 25(11): pp.2623-2626.

DOI: 10.1016/0956-716x(91)90080-k

[14] Miller, W.S. and F.J. Humphreys : Scripta Metallurgica et Materialia, 1991. 25(1): pp.33-38.

[15] Sayuti, M., S. Sulaiman., B.T.H.T. Baharudin., M.K.A. Arifin., Suraya. S., Gholamreza Esmaeilian : Key Engineering Materials, 2011. 471-472: pp.721-726.

DOI: 10.4028/www.scientific.net/kem.471-472.721

[16] Shyu, R.F. and C.T. Ho : Journal of Materials Processing Technology, 2006. 171(3): pp.411-416.

In order to see related information, you need to Login.