Plastic Deformation Behavior of Differently Oriented Fe-35wt.%Cr Alloy Single Crystals Containing Cr-Rich Precipitates under Uniaxial Compression


Article Preview

The plastic deformation behavior of the and [014] Fe-35wt.%Cr alloy single crystals containing fine Cr-rich precipitates were investigated under uniaxial compression. The compressive flow behavior is slightly sensitive to the crystallographic orientation. These two oriented crystals exhibit a clear yield plateau in their compressive stress-strain curves, but the yield plateau of the [014] crystal is somewhat shorter than that of the crystal. As the compressive strain is lager than a certain critical value, e.g., ~13% and ~18% for the [014] and crystals, respectively, the work hardening rate for both two orientations decreases obviously, but the decrease in work hardening rate is more remarkable for the [014] crystal rather than the crystal. These phenomena are discussed to be all related to the interactions between moving dislocations and fine Cr-rich precipitates, and the interaction intensity depends strongly on the orientation. Careful observations of slip deformation characteristics and dislocation structures well provide supports for the explanations to the macroscopic compressive plastic flow behavior.



Edited by:

Honghua Tan




X. M. Cao et al., "Plastic Deformation Behavior of Differently Oriented Fe-35wt.%Cr Alloy Single Crystals Containing Cr-Rich Precipitates under Uniaxial Compression", Applied Mechanics and Materials, Vols. 66-68, pp. 1960-1965, 2011

Online since:

July 2011




[1] J. M. Xiao: Metallurgy Issue of Stainless Steel (in Chinese) (Metallurgical Industry Press, Beijing 2006).

[2] J. M. Finney and C. Laird: Phil. Mag. Vol. 31 (1975), p.339.

[3] C. Laird and L. Buchinger: Metall. Trans. A Vol. 16 (1985), p.2201.

[4] S. Suresh: Fatigue of materials, 2nd edition (Cambridge University Press, London 1998).

[5] J. K. Lee and C. Laird: Mater. Sci. Eng. Vol. 54 (1982), p.39.

[6] D. Steiner and V. Gerold: Mater. Sci. Eng. Vol. 84 (1986), p.77.

[7] M. Kato, N. Gonjo and T. Fujii: ISIJ Inter. Vol. 37 (1997), p.1224.

[8] M. Wilhelm: Mater. Sci. Eng. Vol. 48 (1981), p.91.

[9] X. W. Li and Y. Umakoshi: Scripta Mater. Vol. 48 (2003), p.545.

[10] X. W. Li and Y. Umakoshi: Mater. Sci. Eng. A Vol. 483-484 (2008), pp.426-429.

[11] O. Soriano-Vargas, E. O. Avila-Davila, V. M. Lopez-Hirata, N. Cayetano-Castro and J. L. Gonzalez-Velazquez: Mater. Sci. Eng. A Vol. 527 (2010), p.2910.

[12] G. Mima and M. Yamuguchi: Trans. JIM Vol. 7 (1966), p.117.

[13] G. Mima, M. Yamaguchi and J. Takahashi: Trans. JIM Vol. 9 (1968), p.407.

[14] W. F. Hosford: Mechanical Behavior of Materials (Cambridge University Press, Cambridge 2005).

[15] X. W. Li, X. M. Cao and C. Q. Ma: Acta Metall. Sinica (in Chinese) Vol. 45 (2009), p.801.

[16] A. G. Crocker and J. S. Abell: Phil. Mag. Vol. 33 (1976), p.305.

[17] J. W. Martin: Micromechanisms in particle-hardened alloys, (Cambridge University Press, Cambridge 1980).

[18] X. W. Li, Z. G. Wang and S. X. Li: Phil. Mag. A Vol. 80 (2000), p. (1901).

[19] H. Mughrabi: Acta Metall. Vol 31 (1983), p.1367.

[20] X. W. Li, Z. G. Wang, Y. W. Zhang, S. X. Li and Y. Umakoshi: Phys. Stat. Sol. (a) Vol. 191 (2002), p.97.

Fetching data from Crossref.
This may take some time to load.