Effect of Nitriding on Reaction Layer of Diffusion Bonded Sialon to AISI 420 Martensitic Stainless Steel

Abstract:

Article Preview

Joining sialon to as-received and nitrided AISI 420 martensitic stainless steels using diffusion bonding is reported in this paper. The samples were joined at 1200°C for one hour under uniaxial pressure of 17 MPa in a vacuum (1x10-5 Torr). After joining process, the microstructure, interdiffusion of elements, and hardness of the joint were studied. The interdiffusion and reactivity of the elements created the reaction layer. It consisted of interface layer on the sialon side whereas thicker diffusion layer was formed on the steel side. Thinner reaction layers were observed in joining sialon to nitrided steels compared to joining sialon to as-received steel due to less reactivity between the joined materials. However, more precipitates such as carbides were formed in the parent steel with longer nitriding time. Gaps were formed between the diffusion layer and the parent steel but the interfacial bonds were strong since no cracking occurred on the samples. Since the reaction layer had intermediate hardness, it contributed to the joint’s ductility that reduced the effect of thermal expansion mismatch between the joined materials by acting as a shock absorbing zone.

Info:

Periodical:

Edited by:

Amir Khalid, Bukhari Manshoor, Erween Abdul Rahim, Waluyo Adi Siswanto and Kamil Abdullah

Pages:

178-184

Citation:

N. N. Md Ibrahim et al., "Effect of Nitriding on Reaction Layer of Diffusion Bonded Sialon to AISI 420 Martensitic Stainless Steel", Applied Mechanics and Materials, Vol. 660, pp. 178-184, 2014

Online since:

October 2014

Export:

Price:

$38.00

* - Corresponding Author

[1] D. Travessa, M. Ferrante, G. den Ouden, Diffusion bonding of aluminium oxide to stainless steel using stress relief interlayers, Mater. Sci. & Eng. A 337 (2002) 287-296.

DOI: https://doi.org/10.1016/s0921-5093(02)00046-1

[2] S. Das, A. N. Tiwari, and A. R. Kulkarni, Thermo-compression bonding of alumina ceramic to metal, J. Mater. Sci. 39 (2004) 3345-3355.

[3] X. Shen, L. Yajiang, W. Juan, H. Wanqun, Y. Fusheng, Diffusion bonding of Al2O3-TiC composite ceramic and W18Cr4V high speed steel in vacuum, Vacuum 84 (2010) 378-381.

DOI: https://doi.org/10.1016/j.vacuum.2009.07.012

[4] W. M. Tang, Z. X. Zheng, H. F. Ding, Z. H. Jin, A study of the solid state reaction between silicon carbide and iron, Mater. Chem. & Phy. 74 (2002) 258-264.

DOI: https://doi.org/10.1016/s0254-0584(01)00480-1

[5] M. L. Hattali, S. Valette, F. Ropital, G. Stremsdoerfer, N. Mesrati, D. Tréheux, Study of SiC-nickel alloy bonding for high temperature applications, J. Euro. Cer. Soc. 29 (2009) 813-819.

DOI: https://doi.org/10.1016/j.jeurceramsoc.2008.06.035

[6] M. I. Osendi, A. De Pablos, P. Miranzo, Microstructure and mechanical strength of Si3N4/Ni solid state bonded interfaces, Mater. Sci. & Eng. A 308 (2001) 53-59.

DOI: https://doi.org/10.1016/s0921-5093(00)02027-x

[7] J. Lemus and R. A. L. Drew, Joining of silicon nitride with a titanium foil interlayer, Mater. Sci. & Eng. A 352 (2003) 169-178.

DOI: https://doi.org/10.1016/s0921-5093(02)00892-4

[8] F. Deschaux-Beaume, N. Frety, and C. Colin, Diffusion bonding of Si3N4-TiN composite with nickel-based interlayers, Metal. & Mater. Trans. A 34A (2003) 1627-1636.

DOI: https://doi.org/10.1007/s11661-003-0308-5

[9] A. K. Jadoon, B. Ralph, P. R. Hornsby, Metal to ceramic joining via a metallic interlayer bonding technique, J. Mater. Proc. Tech. 152 (2004) 257-265.

DOI: https://doi.org/10.1016/j.jmatprotec.2003.10.005

[10] R. Polanco, A. De Pablos, P. Miranzo, M. I. Osendi, Metal-ceramic interfaces: joining silicon nitride-stainless steel, App. Surf. Sci. 238 (2004) 506-512.

DOI: https://doi.org/10.1016/j.apsusc.2004.05.290

[11] L. Ceja-Cárdenas, J. Lemus-Ruíz, S. Díaz-de la Torre, R. Escalona-González, Interfacial behavior in the brazing of silicon nitride joint using a Nb-foil interlayer, J. Mater. Proc. Tech. 213 (2013) 411-417.

DOI: https://doi.org/10.1016/j.jmatprotec.2012.09.019

[12] P. Hussain and A. Isnin, Joining of austenitic stainless steel and ferritic stainless steel to sialon, J. Mater. Proc. Tech. 113 (2001) 222-227.

DOI: https://doi.org/10.1016/s0924-0136(01)00640-9

[13] A. Abed, P. Hussain, I. S. Jalham, A. Hendry, Joining of sialon ceramics by a stainless steel interlayer, J. Euro. Cer. Soc. 21 (2001) 2803-2809.

DOI: https://doi.org/10.1016/s0955-2219(01)00227-8

[14] H. Firmanto, Reaction layers in diffusion bonded of sialon to ferritic steel, Ph. D Dissertation, Universiti Teknologi PETRONAS, Malaysia (2011).

[15] J. Vleugels, T. Laoui, K. Vercammen, J. P. Celis, O. van der Biest, Chemical interaction between a sialon cutting tool and iron-based alloys, Mater. Sci. & Eng. A 187 (1994) 177-182.

DOI: https://doi.org/10.1016/0921-5093(94)90345-x

[16] J. Vleugels, L. Vandeperre, O. van der Biest, Influence of alloying elements on the chemical reactivity between sialon ceramics and iron-based alloys, J. Mater. Res. 11 (1996) 1265-1276.

DOI: https://doi.org/10.1557/jmr.1996.0161

[17] J. Lemus-Ruíz, C. A. León-Patiño, R. A. L. Drew, Self-joining of Si3N4 using metal interlayers, Metal. & Mater. Trans. A 37 (2006) 69-75.

DOI: https://doi.org/10.1007/s11661-006-0153-4

[18] K. Suganuma, Recent advances in joining technology of ceramics to metals, ISIJ Int. 30 (1990) 1046-l058.

DOI: https://doi.org/10.2355/isijinternational.30.1046

[19] A. P. Tomsia, Ceramic/metal joining for structures and materials, J. De Phy. IV 3 (1993) 1317-1326.

[20] G.V. Samsonov and I. M. Vinitskii, Handbook of Refractory Compounds, first ed., Plenum Data Corporation, New York, (1980).