Study on Dispersion and Characterization of Functionalized MWCNTs Prepared by Wet Oxidation


Article Preview

The MWCNTs was functionalized by refluxing commercial MWCNTs (a-MWCNTs) in concentrated HNO3/H2SO4 (3:1 v/v) at 100°C for 6 hours. The dispersion of a-MWCNTs and functionalized MWCNTs (f-MWCNTs) were observed after 1 hour sonication in ethanol. Both samples were characterized by UV-vis spectroscopy for dispersion behavior. The dried f-MWCNTs and a-MWCNTs were characterized by Raman spectroscopy to estimate the defect level. The morphology of the samples were analyzed by Transmission Electron Microscopy (TEM). The f-MWCNTs was well dispersed in ethanol within 2 weeks of observations period. The colloidal stability of a-MWCNTs was low as it was easily sediment after 24 hours. The UV-vis spectra of f-MWCNTs show maximum absorbance at 250 nm meanwhile no absorbance was observed for a-MWCNTs. Analysis from Raman spectrum shows that the f-MWCNTs have relative intensity of 1.101 which is higher than a-MWCNTs that have relative intensity of 0.935. The image from TEM revealed that the f-MWCNTs have structural defects and the absence of amorphous carbon on sidewall meanwhile the a-MWCNTs indicate otherwise.



Edited by:

Azmi Mohamed Yusof




I. S. Zaine et al., "Study on Dispersion and Characterization of Functionalized MWCNTs Prepared by Wet Oxidation", Applied Mechanics and Materials, Vol. 661, pp. 8-13, 2014

Online since:

October 2014




* - Corresponding Author

[1] V. M. Aroutiounian, A. Z. Adamyan, E. A. Khachaturyan, Z. N. Adamyan, K. Hernadi, Z. Pallai, Z. Nemeth, L. Forro, A. Magrez, and E. Horvath, Study of the surface-ruthenated SnO2/MWCNTs nanocomposite thick-film gas sensors, Sensors Actuators B Chem., vol. 177, p.308–315, Feb. (2013).

DOI: 10.1016/j.snb.2012.10.106

[2] D. Ghosh, S. Giri, A. Mandal, and C. K. Das, H+, Fe3+ codoped polyaniline/MWCNTs nanocomposite: Superior electrode material for supercapacitor application, Appl. Surf. Sci., vol. 276, p.120–128, Jul. (2013).

DOI: 10.1016/j.apsusc.2013.03.044

[3] R. A. Ahmed, A. M. Fekry, and R. A. Farghali, A study of calcium carbonate/multiwalled-carbon nanotubes/chitosan composite coatings on Ti–6Al–4V alloy for orthopedic implants, Appl. Surf. Sci., vol. 285, p.309–316, Nov. (2013).

DOI: 10.1016/j.apsusc.2013.08.056

[4] H. Niu, S. Qin, X. Mao, S. Zhang, R. Wang, L. Wan, J. Xu, and S. Miao, Axle-sleeve Structured MWCNTs/Polyaniline Composite Film as Cost-effective Counter-Electrodes for High Efficient Dye-Sensitized Solar Cells, Electrochim. Acta, vol. 121, p.285–293, Mar. (2014).

DOI: 10.1016/j.electacta.2013.12.059

[5] A. G. Osorio, I. C. L. Silveira, V. L. Bueno, and C. P. Bergmann, H2SO4/HNO3/HCl—Functionalization and its effect on dispersion of carbon nanotubes in aqueous media, Appl. Surf. Sci., vol. 255, no. 5, p.2485–2489, Dec. (2008).

DOI: 10.1016/j.apsusc.2008.07.144

[6] T. A. Saleh, The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4, Appl. Surf. Sci., vol. 257, no. 17, p.7746–7751, Jun. (2011).

DOI: 10.1016/j.apsusc.2011.04.020

[7] P. Mishra and S. S. Islam, Surface modification of MWCNTs by O2 plasma treatment and its exposure time dependent analysis by SEM, TEM and vibrational spectroscopy, Superlattices Microstruct., vol. 64, p.399–407, Dec. (2013).

DOI: 10.1016/j.spmi.2013.10.010

[8] F. Pourfayaz, Y. Mortazavi, A. Khodadadi, S. H. Jafari, S. Boroun, and M. V. Naseh, A comparison of effects of plasma and acid functionalizations on structure and electrical property of multi-wall carbon nanotubes, Appl. Surf. Sci., vol. 295, p.66–70, Mar. (2014).

DOI: 10.1016/j.apsusc.2014.01.005

[9] J. Li, Z. Wu, C. Huang, H. Liu, R. Huang, and L. Li, Mechanical properties of cyanate ester/epoxy nanocomposites modified with plasma functionalized MWCNTs, Compos. Sci. Technol., vol. 90, p.166–173, Jan. (2014).

DOI: 10.1016/j.compscitech.2013.11.009

[10] K. -P. Yoo, K. -H. Kwon, N. -K. Min, M. J. Lee, and C. J. Lee, Effects of O2 plasma treatment on NH3 sensing characteristics of multiwall carbon nanotube/polyaniline composite films, Sensors Actuators B Chem., vol. 143, no. 1, p.333–340, Dec. (2009).

DOI: 10.1016/j.snb.2009.09.029

[11] S. Yang, X. Wang, H. Yang, Y. Sun, and Y. Liu, Influence of the different oxidation treatment on the performance of multi-walled carbon nanotubes in the catalytic wet air oxidation of phenol., J. Hazard. Mater., vol. 233–234, p.18–24, Sep. (2012).

DOI: 10.1016/j.jhazmat.2012.06.033

[12] A. Ansón-Casaos, M. González, J. M. González-Domínguez, and M. T. Martínez, Influence of Air Oxidation on the Surfactant-Assisted Purification of Single-Walled Carbon Nanotubes, Langmuir, vol. 27, no. 11, p.7192–7198, Apr. (2011).

DOI: 10.1021/la200730k

[13] N. Dementev, S. Osswald, Y. Gogotsi, and E. Borguet, Purification of carbon nanotubes by dynamic oxidation in air, J. Mater. Chem., vol. 19, no. 42, p.7904–7908, (2009).

DOI: 10.1039/b910217e

[14] J. Yu, N. Grossiord, C. E. Koning, and J. Loos, Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution, Carbon N. Y., vol. 45, no. 3, p.618–623, Mar. (2007).

DOI: 10.1016/j.carbon.2006.10.010

[15] L. Jiang, L. Gao, and J. Sun, Production of aqueous colloidal dispersions of carbon nanotubes, J. Colloid Interface Sci., vol. 260, no. 1, p.89–94, Apr. (2003).

DOI: 10.1016/s0021-9797(02)00176-5

[16] A. Fraczek-Szczypta, E. Dlugon, A. Weselucha-Birczynska, M. Nocun, and M. Blazewicz, Multi walled carbon nanotubes deposited on metal substrate using EPD technique. A spectroscopic study, J. Mol. Struct., vol. 1040, p.238–245, May (2013).

DOI: 10.1016/j.molstruc.2013.03.010

[17] F. -G. Banica, Chemical sensors and biosensors: fundamentals and applications. John Wiley & Sons, 2012, p.576.

[18] B. Scheibe, E. Borowiak-Palen, and R. J. Kalenczuk, Oxidation and reduction of multiwalled carbon nanotubes — preparation and characterization, Mater. Charact., vol. 61, no. 2, p.185–191, Feb. (2010).

DOI: 10.1016/j.matchar.2009.11.008

[19] L. G. Cançado, K. Takai, T. Enoki, M. Endo, Y. a. Kim, H. Mizusaki, a. Jorio, L. N. Coelho, R. Magalhães-Paniago, and M. a. Pimenta, General equation for the determination of the crystallite size L[sub a] of nanographite by Raman spectroscopy, Appl. Phys. Lett., vol. 88, no. 16, p.163106, (2006).

DOI: 10.1063/1.2196057

[20] O. Access, R. Yudianti, H. Onggo, Y. Saito, T. Iwata, and J. Azuma, Analysis of Functional Group Sited on Multi-Wall Carbon Nanotube Surface, p.242–247, (2011).

DOI: 10.2174/1874088x01105010242

[21] J. H. Lehman, M. Terrones, E. Mansfield, K. E. Hurst, and V. Meunier, Evaluating the characteristics of multiwall carbon nanotubes, Carbon N. Y., vol. 49, no. 8, p.2581–2602, Jul. (2011).

DOI: 10.1016/j.carbon.2011.03.028

Fetching data from Crossref.
This may take some time to load.