Low-Fire Processing (1-x)Mg0.95Co0.05TiO3 - xCa0.6La0.8/3TiO3 Microwave Dielectric Ceramics


Article Preview

The effects of 3Z2B addition on the microwave dielectric properties and the microstructures of (1-x)(Mg0.95Co0.05)TiO3-xCa0.6La0.8/3TiO3 ceramics prepared with conventional solid-state route have been investigated. Doping with 3Z2B can effectively promote the densification and the microwave dielectric properties of (1-x)(Mg0.95Co0.05)TiO3-xCa0.6La0.8/3TiO3 ceramics. It was found that (1-x)(Mg0.95Co0.05)TiO3-xCa0.6La0.8/3TiO3 ceramics can be sintered at 1150°C due to the liquid phase effect of 3Z2B additions observed by SEM. The Q×f value of (1-x)(Mg0.95Co0.05)TiO3-xCa0.6La0.8/3TiO3 ceramics decreased with increasing 3Z2B content. At 1150°C, 0.9(Mg0.95Co0.05)TiO3-0.1Ca0.6La0.8/3TiO3 ceramics with 1.0wt% 3Z2B addition possesses a εr value of 22.6, a Qf value of 49,000 (GHz) and a τf value of-10.7 ppm/°C.



Edited by:

He Rui, Puneet Tandon and Teresa T. Zhang




C. H. Shen et al., "Low-Fire Processing (1-x)Mg0.95Co0.05TiO3 - xCa0.6La0.8/3TiO3 Microwave Dielectric Ceramics", Applied Mechanics and Materials, Vol. 664, pp. 14-17, 2014

Online since:

October 2014




* - Corresponding Author

[1] C. Vittoria, Elements of Microwave Networks, World Scientific, Singapore, (1998).

[2] R.W. Rhea, Handbook of Microwave Technology, Marcel Dekker, New York, (1998).

[3] J. H. Sohn, Y. Inaguma, Microwave dielectric characteristics of ilmenite-type titanates with high Q values, Jpn. J. Appl. Phys. 33, 5466. (1994).

DOI: https://doi.org/10.1143/jjap.33.5466

[4] T. Kakada, S.F. Wang, Syoshikawa, J. Am. Ceram. Soc. 77, 1909. (1944).

[5] T. Kakada, S.F. Wang, Syoshikawa, J. Am. Ceram. Soc. 77, 2485. (1944).

[6] S.I. Hirno, Taashi, Hayashi, J. Am. Ceram. Soc. 74, 1320. (1991).

[7] V. Tolmer, G. dedqardin, J. Am. Ceram. Soc. 80, 1981. (1997).

[8] Ying-Chieh Lee, Wen-Hsi Leeb, J. Euro. Ceram. Soc. 25, 3459–3468. (2005).

[9] B. W. Hakki and P. D. Coleman, IEEE Trans. Microwave Theory & Tech., 8.

[4] 402-10. (1960).

[10] W. E. Courtney, IEEE Trans. Microwave Theory & Tec., 18.

[8] 476-485. (1970).

[11] C.L. Huang, C.L. Pan, Jpn. J. Appl. Phys. 41, 707. (2002).

[12] J. Liao, M. Senna, Mater. Res. Bull. 30, 385. (1995).

[13] C. H. Shen, C. L. Huang, J. Am. Ceram. Soc. 92, 384-388. (2009).

[14] B. D. Silverman: Phys. Rev. 125, 1921. (1962).