Comparison of Dynamic Mechanical Properties between Pure Iron (BCC) and Fe-30Mn-3Si-4Al TWIP Steel (FCC)

Abstract:

Article Preview

Dynamic mechanical properties and microstructures of pure iron and Fe-30Mn-3Si-4Al TWIP (TWinning Induced Plasticity) steel were conducted by SHPB (Split-Hopkinson Pressure Bar), OM (Optical Microscopy) and TEM (Transmission Electron Microscope), at the strain rate ranging from 102 to 105 s-1 and at room temperature. The effect of high strain rate on the mechanical responses of pure iron and Fe-30Mn-3Si-4Al TWIP steel belonging to BCC (Body Centered Cubic) and FCC (Face Centered Cubic) structures respectively was evaluated. The comparison of deformation mechanism was analyzed between them and it concluded that dislocation gliding is a major deformation mechanism in pure iron with BCC structure and deformation twinning plays a significant role in Fe-30Mn-3Si-4Al TWIP steel with FCC structure.

Info:

Periodical:

Edited by:

Ping Chen

Pages:

179-186

Citation:

W. P. Bao et al., "Comparison of Dynamic Mechanical Properties between Pure Iron (BCC) and Fe-30Mn-3Si-4Al TWIP Steel (FCC)", Applied Mechanics and Materials, Vol. 692, pp. 179-186, 2014

Online since:

November 2014

Export:

Price:

$38.00

* - Corresponding Author

[1] R. Smerd, S. Winkler, C. Salisbury, M. Worswick, D. Lloyd, M. Finn, High strain rate tensile testing of automotive aluminum alloy sheet, Int. J. Impact Eng. 32 (2005) 541-560.

DOI: https://doi.org/10.1016/j.ijimpeng.2005.04.013

[2] D.W. Xiao, Y.L. Li, S.S. Hu, L.C. Cai, High Strain Rate Deformation Behavior of Zirconium at Elevated Temperatures, J. Mater. Sci. Technol. 26 (2010) 878-882.

DOI: https://doi.org/10.1016/s1005-0302(10)60140-5

[3] H. Watanabe, K. Ishikawa, Effect of texture on high temperature deformation behavior at high strain rates in a Mg-3Al-1Zn alloy, Mater. Sci. Eng. A 523 (2009) 304-311.

DOI: https://doi.org/10.1016/j.msea.2009.06.019

[4] T. Saburi, S. Kubota, Y.J. Wada, T. Kumaki, M. Yoshida, High Strain Rate Test of a Steel Plate under Blast Loading from High Explosive, Mater. Sci. Forum 767 (2014) 144-149.

DOI: https://doi.org/10.4028/www.scientific.net/msf.767.144

[5] Y. Tian, L. Huang, H.J. Ma, J.J. Li, Establishment and comparison of four constitutive models of 5A02 aluminium alloy in high-velocity forming process, Mater. Des. 54 (2014) 587-597.

DOI: https://doi.org/10.1016/j.matdes.2013.08.095

[6] N. Li, Y.D. Wang, R.L. Peng, X. Sun, P.K. Liaw, G.L. Wu, L. Wang, H.N. Cai, Localized amorphism after high-strain-rate deformation in TWIP steel, Acta mater. 59 (2011) 6369-6377.

DOI: https://doi.org/10.1016/j.actamat.2011.06.048

[7] S. Shekhar, J. Cai, J. Wang, M.R. Shankar, Multimodal ultrafine grain size distributions from severe plastic deformation at high strain rates, Mater. Sci. Eng. A 527 (2009) 187-191.

DOI: https://doi.org/10.1016/j.msea.2009.07.058

[8] A. Mishra, M. Martin, N.N. Thadhani, B.K. Kad, E.A. Kenik, M.A. Meyers, High-strain-rate response of ultra-fine-grained copper, Acta Mater. 56 (2008) 2770-2783.

DOI: https://doi.org/10.1016/j.actamat.2008.02.023

[9] R.W. Armstrong, S.M. Walley, High strain rate properties of metals and alloys, Int. Mater. Rev. 53 (2008) 105-128.

[10] J.E. Field, S.M. Walley, W.G. Proud, H.T. Goldrein, C.R. Siviour, Review of experimental techniques for high rate deformation and shock studies, Int. J. Impact Eng., 30 (2004) 725-775.

DOI: https://doi.org/10.1016/j.ijimpeng.2004.03.005

[11] G.G. Corbett, S.R. Reid, W. Johnson, Impact loading of plates and shells by free-flying projectiles: A review, Int. J. Impact Eng. 18 (1996) 141-230.

DOI: https://doi.org/10.1016/0734-743x(95)00023-4

[12] I. Ulacia, C.P. Salisbury, I. Hurtado, M.J. Worswick, Tensile characterization and constitutive modeling of AZ31B magnesium alloy sheet over wide range of strain rates and temperatures, J. Mater. Processing Technol. 211 (2011) 830-839.

DOI: https://doi.org/10.1016/j.jmatprotec.2010.09.010

[13] W.H. Tian, A.L. Fan, H.Y. Gao, J. Luo, Z. Wang, Comparison of microstructures in electroformed copper liners of shaped charges before and after plastic deformation at different strain rates, Mater. Sci. Eng. A 350 (2003) 160-167.

DOI: https://doi.org/10.1016/s0921-5093(02)00721-9

[14] H.G. Salem, W.M. Lee, L. Bodelot, G. Ravichandran, Quasi-Static and high-strain-rate experimental microstructural investigation of a high-strength aluminum alloy, Metall. Mater. Trans. A 43A (2012) 1895-(1901).

DOI: https://doi.org/10.1007/s11661-011-1064-6

[15] X.Q. Liu, C.W. Tan, J. Zhang, Y.G. Hu, H.L. Ma, F.C. Wang, H.N. Cai, Influence of microstructure and strain rate on adiabatic shearing behavior in Ti–6Al–4V alloys, Mater. Sci. Eng. A 501 30-36.

DOI: https://doi.org/10.1016/j.msea.2008.09.076

[16] M.F. Quinlan, M.T. Hillery, High-strain-rate testing of beryllium copper at elevated temperatures, J. Mater. Processing Technol. 153-154 (2004) 1051-1057.

DOI: https://doi.org/10.1016/j.jmatprotec.2004.04.013

[17] D.L. Baragar, The high temperature and high strain-rate behaviour of a plain carbon and an HSLA steel, J. Mech. Working Technol. 14 (1987) 295-307.

DOI: https://doi.org/10.1016/0378-3804(87)90015-5

[18] S. Nemat-Nasser and W.G. Guo, Flow stress of commercially pure niobium over a broad range of temperatures and strain rates, Mater. Sci. Eng. A, 284 (2000) 202-210.

DOI: https://doi.org/10.1016/s0921-5093(00)00740-1

[19] G.P. Skoro, J.R.J. Bennett, T.R. Edgecock, C.N. Booth, Yield strength of molybdenum, tantalum and tungsten at high strain rates and very high temperatures, J. Nucl. Mater. 426 (2012) 45-51.

DOI: https://doi.org/10.1016/j.jnucmat.2012.03.044

[20] C.Y. Gao, L.C. Zhang, Constitutive modelling of plasticity of fcc metals under extremely high strain rates, Int. J. Plasticity 32-33 (2012) 121-133.

DOI: https://doi.org/10.1016/j.ijplas.2011.12.001

[21] W.P. Bao, Y.J. Zhao, L.W. Xu, Z.P. Xiong, X.P. Ren, Effect of solution treatment on microstructure and mechanical properties of TWIP steel, Heat Treatment of Metals, 35 (2010) 33-37.

[22] W.P. Bao, Y.Z. Zhao, C.M. Li, X.P. Ren, Experimental research on the dynamic constitutive relation of pure iron at elevated temperatures and high strain rates, J. Mech. Eng., 46 (2010), 74-79.

DOI: https://doi.org/10.3901/jme.2010.04.074

[23] Y.L. Li, T. Suo, W.G. Guo, R. Hu, J.S. Li, H.Z., Fu, Determination of dynamic behavior of materials at elevated temperatures and high strain rates using Hopkinson bar, Explosion and Shock Waves 25 (2005) 487-492.

[24] Z.P. Xiong, X.P. Ren, W. P Bao, S.X. Li, H.T. Qu, Dynamic mechanical properties of the Fe–30Mn–3Si–4Al TWIP steel after different heat treatments, Mater. Sci. Eng. A 530 (2011) 426-431.

DOI: https://doi.org/10.1016/j.msea.2011.09.106

[25] Z.P. Xiong, X.P. Ren, W.P. Bao, J. Shu, S.X. Li, H.T. Qu, Effect of high temperatures and high strain rates on dynamic mechanical properties of Fe-30Mn-3Si-4Al TWIP steel, Int. J. Min. Metall. Mater. 20 (2013) 835-841.

DOI: https://doi.org/10.1007/s12613-013-0804-6

[26] S. Pappu, L.E. Murr, Shock deformation twinning in an iron explosively formed projectile, Mater. Sci. Eng. A 2000 (284) 148-157.

DOI: https://doi.org/10.1016/s0921-5093(00)00792-9

Fetching data from Crossref.
This may take some time to load.