Spin Coating Deposition of c-Oriented Wurtzite Gallium Nitride Thin Film


Article Preview

Spin coating growth and characterisations of c-oriented wurtzite structure gallium nitride (GaN) thin film on silicon (Si) substrate with (100) orientation was reported. The precursor solution consisted of a readily available gallium (III) nitrate hydrate powder, ethanol and diethanolamine as starting material, solvent and surfactant. All the structural and optical results showed that c-oriented wurtzite GaN thin film was deposited on Si (100) substrate. Compared with earlier reported work using sol-gel deposition, significant improvements in the structural quality of the GaN thin film were observed. The FWHM value of the thin film was approximately 2.60°. The framework described here is both an easy in setup and simple method as compared to other method such as MBE, MOCVD, and radio frequency sputtering to produce c-oriented wurtzite structure GaN thin film.



Edited by:

Mohd Jailani Mohd Nor, Bashir Mohamad Bali Mohamad, Mariana Yusoff et al.




C. Y. Fong et al., "Spin Coating Deposition of c-Oriented Wurtzite Gallium Nitride Thin Film", Applied Mechanics and Materials, Vol. 699, pp. 70-75, 2015

Online since:

November 2014




* - Corresponding Author

[1] S. Strite, M.E. Lin, H. Morkoq, Progress and prospects for GaN and the III-V nitride semiconductors, Thin Solid Films 231 (1993) 197-210.

DOI: https://doi.org/10.1016/0040-6090(93)90713-y

[2] P. Kung, M. Razegui, III Nitride wide bandgap semiconductors: A survey of the current status and future trends of the materials and device technology, Opto-Electronics Review 8 (2000) 201-239.

[3] H. Morkoc, Nitride Semiconductors and Devices, Springer, Heidelberg, (1998).

[4] K. Sardar, R. Raju, G.N. Subbanna, Epitaxial GaN films deposited on sapphire substrates prepared by the sol-gel method, Solid State Commun. 125 (2003) 355-358.

DOI: https://doi.org/10.1016/s0038-1098(02)00810-4

[5] M. Puchinger, T. Wagner, D. Rodewald, J. Bill, F. Aldinger, F.F. Lange, Gallium nitride thin layers via a liquid precursor route, J. Cryst. Growth 208 (2000) 153-159.

DOI: https://doi.org/10.1016/s0022-0248(99)00416-9

[6] Y. Yang, C. Tran, V. Leppert, S.H. Risbud, From Ga(NO3)3 to nanocrystalline GaN confined nanocrystal synthesis in silica xerogels, Mater. Lett. 43 (2000) 240-243.

DOI: https://doi.org/10.1016/s0167-577x(99)00266-9

[7] T. Ogi, Y. Itoh, M. Abdullah, F. Iskandar, Y. Azuma, K. Okuyama, Fabrication and photoluminescence of highly crystalline GaN and GaN: Mg nanoparticles, J. Cryst. Growth 281 (2005) 234-241.

DOI: https://doi.org/10.1016/j.jcrysgro.2005.04.021

[8] F. Iskandar, T. Ogi, K. Okuyama, Simple synthesis of GaN nanoparticles from gallium nitrate and ammonia aqueous solution under a flow of ammonia gas, Mater. Lett. 60 (2006) 73-76.

DOI: https://doi.org/10.1016/j.matlet.2005.07.075

[9] A. Suhandi, D. Rusdiana, Y.R. Tayubi, A. Samsudin, Effect of deposition temperature on the physical characteristic of GaN thin films deposited by spin coating technique on a sapphire substrate using gallium-citrate-amine gel and nitrogen gas, J. Mater. Sci. Eng. B 1(2011).

[10] H. Bahadur, A.K. Srivastava, R.K. Sharma, S. Chandra, Morphologies of sol–gel derived thin films of ZnO using different precursor materials and their nanostructures, Nanoscale Res. Lett. 2 (2007) 469-475.

DOI: https://doi.org/10.1007/s11671-007-9089-x

[11] A. Verma, S.A. Agnihotry, Thermal treatment effect on nanostructured TiO2 films deposited using diethanolamine stabilized precursor sol, Electrochimica Acta 52 (2007) 2701-2709.

DOI: https://doi.org/10.1016/j.electacta.2006.09.036

[12] W.J. Luo, X.L. Wang, L.C. Guo, H.L. Xiao, C.M. Wang, J.X. Ran, J.P. Li, J.M. Li, The effect of low temperature AlN interlayers on the growth of GaN epilayer on Si (111) by MOCVD, Superlattice Microst. 44 (2008) 153-159.

DOI: https://doi.org/10.1016/j.spmi.2008.04.003

[13] P.T. Manoharan, P. Thangadurai, S. Balaji, Growth and mechanism of CdS nanorods by microstructure analysis, Mater. Chem. Phys. 114 (2009) 420-424.

DOI: https://doi.org/10.1016/j.matchemphys.2008.09.048

[14] A. Phuruangrat, T. Thongtem, S. Thongtem, Characterization of multipod cadmium sulfide nanostructures synthesized by aminethermal method, Chalcogenide Lett. 7 (2010) 605-608.

[15] S.Y. Kuo, F.L. Lai, W.C. Chen, C.N. Hsiao., Catalyst-free growth and characterization of gallium nitride nanorods, J. Cryst. Growth 310 (2008) 5129-5133.

DOI: https://doi.org/10.1016/j.jcrysgro.2008.08.047

[16] L.S. Chuah, Z. Hassan, S.S. Ng, H.A. Hassan, High carrier concentrations of n- and p-doped GaN on Si(111) by nitrogen plasma-assisted molecular-beam epitaxy, J. Mater. Res. 22 (2007) 2623-2630.

DOI: https://doi.org/10.1557/jmr.2007.0336

[17] V.Y. Davydov, Y.E. Kitaev, I.N. Goncharuk, A.N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M.B. Smirnov, A.P. Mirgorodsky, R.A. Evarestov, Phonon dispersion and Raman scattering in hexagonal GaN and AlN, Phys. Review B 58 (1998) 12899-12907.

DOI: https://doi.org/10.1103/physrevb.58.12899

[18] P. Perlin, C.J. Carillon, J.P. Itic, A.S. Miguel, I. Grzegory, A. Polian, Raman scattering and x-ray-absorption spectroscopy in gallium nitride untier high pressure, Phys. Review B 45 (1992) 83-89.

DOI: https://doi.org/10.1103/physrevb.45.83

[19] M.R. Hashim, K. Al-Heuseen, N.K. Ali, Synthesis of hexagonal and cubic GaN thin film on Si (111) using a low-cost electrochemical deposition technique, Mater. Lett. 64 (2010) 1604-1606.

DOI: https://doi.org/10.1016/j.matlet.2010.04.043