The Determination and Evaluation of Nitinol Constitutive Models for Finite Element Analysis

Abstract:

Article Preview

Superelastic Ni-Ti (Nitinol) is a member of the shape memory alloy (SMA) family of metals. The physical properties of Nitinol are highly dependant on a number of factors, including manufacturing method, subsequent processing, operating temperature, and strain rate. These factors complicate the prescription of material constitutive models, leading to complexities in the computational analysis of Nitinol components. The current work explores the limitations in the Nitinol material model available in existing commercial finite element (FE) software using a series of specially design experimental tests and representative FE models.

Info:

Periodical:

Edited by:

J. Quinta da Fonseca

Pages:

81-88

Citation:

E. McCummiskey et al., "The Determination and Evaluation of Nitinol Constitutive Models for Finite Element Analysis", Applied Mechanics and Materials, Vols. 7-8, pp. 81-88, 2007

Online since:

August 2007

Export:

Price:

$38.00

[1] Otsuka, K., Wayman, C. M., (1998). Shape Memory Materials: Cambridge University Press.

[2] Duerig, T., Pelton, A., Stockel,D., (1999). An Overview of nitinol medical applications,. Materials Science and Engineering A, A273-275: 149-160.

DOI: https://doi.org/10.1016/s0921-5093(99)00294-4

[3] Favier, D., Liu, Y., Orgeas, L., Sandel, A., Debove, L., Comte-Gaz, P., (2006). Influence of thermomechanical processing on the superelastic properties of a Ni-rich Nitinol shape memory alloy,. Materials Science and Engineering A, A429: 130-136.

DOI: https://doi.org/10.1016/j.msea.2006.05.018

[4] Otsuka, K., Ren, X., (2005). Physical Metallurgy of Ti-Ni-based shape memory alloys,. Progress in Materials Science, 50: 511-678.

DOI: https://doi.org/10.1016/j.pmatsci.2004.10.001

[5] Adharapuapu, R., A. Jiang, F., Vecchio. K., S., Gray., G., T., (2006). Response of NiTi shape memory alloy at high strain rate: A systematic investigation of temperature effects on tension-compression asymmetry,. Acta Materialia, 54: 4609-4620.

DOI: https://doi.org/10.1016/j.actamat.2006.05.047

[6] Chen, W., W., Wu, Q., Kang, J., Winfree, N., (2008). Compressive superelastic behaviour of a NiTi shape memory alloy at strain rates of 0. 001-750s-1,. International Journal of Solids and Structures, 38: 8989-8998.

DOI: https://doi.org/10.1016/s0020-7683(01)00165-2

[7] Gong, J., M., Tobushi, H., Takaka, K., Okumara, K., (2002).

[8] Liu, Y., Xie, Z., Van Humbeeck, J., Delaey, L., (1998). Asymmetry of stress-strain curves under tension and compression for NiTi shape memory alloys,. Acta Materialia, 46: 43254338.

DOI: https://doi.org/10.1016/s1359-6454(98)00112-8

[9] Morgan, N., B., Gong. X. -Y., Wick, A., Pelton, A., Journal of ASTM International, 2006(IN PRINT). Observations on cyclic transformation behaviour of Nitinol.

[10] Siddons, D.J., Moon, J. R., (2001). Tensile and compression performance of NiTi tubing,. Materials Science and Technology, 17 (9): 1073-1078.

DOI: https://doi.org/10.1179/026708301101511202

[11] ANSYS Inc., (2005). Release 10. 0 Documentation for ANSYS.

[12] Hibbit, Karlsson & Sorensen Inc., Abaqus User's Manual Version 6. 5.

[13] LS-Dyna, (2006). LS-Dyna Theory Manual.

[14] Auricchio, F., Taylor, R. L., Lubliner, J., (1997). Shape-memory alloys: macromodelling and numerical simulations of the superelastic behaviour,. Computer Methods in Applied Mechanics and Engineering, 146: 281-312.

DOI: https://doi.org/10.1016/s0045-7825(96)01232-7