Application of 3D Traction Force Microscopy to Mechanotransduction of Cell Clusters

Abstract:

Article Preview

With increasing understanding of the important role mechanics plays in cell behavior, the experimental technique of traction force microscopy has grown in popularity over the past decade. While researchers have assumed that cells on a flat substrate apply tractions in only two dimensions, a finite element simulation is discussed here that demonstrates how cells apply tractions in all three dimensions. Three dimensional traction force microscopy is then used to experimentally confirm the finite element results. Finally, the implications that the traction distributions of cell clusters have on the study of inhibition of proliferation due to cell contact and scattering of cells in a cluster are discussed.

Info:

Periodical:

Edited by:

R. L. Burguete, M. Lucas, E. A. Patterson, S. Quinn

Pages:

21-27

DOI:

10.4028/www.scientific.net/AMM.70.21

Citation:

J. Notbohm et al., "Application of 3D Traction Force Microscopy to Mechanotransduction of Cell Clusters", Applied Mechanics and Materials, Vol. 70, pp. 21-27, 2011

Online since:

August 2011

Export:

Price:

$35.00

[1] D.E. Discher, P. Janmey, and Y.L. Wang: Science Vol. 310 (2005), p.1139.

[2] T. Oliver, M. Dembo, and K. Jacobson: Journal of Cell Biology Vol. 145 (1999), p.589.

[3] S. Suresh: Acta Biomaterialia Vol. 3 (2007), p.3989.

[4] T. Oliver, M. Dembo, and K. Jacobson: Cell Motility and the Cytoskeleton Vol. 31 (1995), p.225.

[5] M. Dembo and Y.L. Wang: Biophys J Vol. 76 (1999), p.2307.

[6] C.A. Reinhart-King, M. Dembo, and D.A. Hammer: Biophs J Vol. 95 (2008), p.6044.

[7] X. Trepat, M.R. Wasserman, T.E. Angelini, E. Millet, D.A. Weitz, J. P. Butler, and J.J. Fredberg: Nature Physics Vol. 5 (2009), p.426.

DOI: 10.1038/nphys1269

[8] B. Sabass, M.L. Gardel, C.M. Waterman, and U.S. Schwarz: Biophys J Vol. 94 (2008), p.207.

[9] S.A. Maskarinec, C. Franck, D.A. Tirrell, and G. Ravichandran: Proc. Nat. Acad. Sci. USA Vol. 106 (2009), p.22108.

[10] S.S. Hur, Y. Zhao, Y.S. Li, E. Botvinick, and S. Chien: Cellular and Molecular Bioeng. Vol. 2 (2009), p.425.

[11] C.M. Nelson, R.P. Jean, J.L. Tan, W.F. Liu, N.J. Sniadecki, A.A. Spector, and C.S. Chen: Proc. Nat. Acad. Sci. USA Vol. 102 (2005), p.11594.

[12] J. de Rooij, A. Kerstens, G. Danuser, M.A. Schwartz, and C.M. Waterman-Storer: Journal of Cell Biology Vol. 171 (2005), p.153.

[13] R.J. Pelham and Y.L. Wang: Proc. Natl. Acad. Sci. USA Vol. 94 (1997), p.13661.

[14] C. Franck, S. Hong, S.A. Maskarinec, D.A. Tirrell, and G. Ravichandran: Experimental Mechanics Vol. 47 (2007), p.427.

[15] J.W. Dally and W.F. Riley: Experimental Stress Analysis, 4th ed. (College House Enterprises, Knoxville, TN 2005).

[16] J.H. Kim, K. Kushiro, N.A. Graham, and A.R. Asthagiri: Proc. Natl. Acad. Sci. USA Vol. 106 (2009) p.11149.

In order to see related information, you need to Login.