Heat Transfer Characteristics of the Phase Change Material Microcapsule Slurry in Solid Phase State

Abstract:

Article Preview

This experiment is performed to investigate heat transfer characteristics with the PCM microcapsule slurry in a solid phase state at a horizontal rectangular enclosure heating from below and cooling from top. Some important parameters are taken into account such as the mass concentration of the PCM, the temperature difference between heating plate and cooling plate, Nusselt number Nu, Rayleigh number Ra and the aspect ratio (width/height) of the horizontal rectangular enclosure. Experiment is done under the thermal steady condition in the PCM microcapsule slurry. Heat transfer coefficient is measured under various temperature differences in PCM mass concentrations of 10% and 20%. And relationship with Nusselt number Nu and Rayleigh number Ra is summarized to various heights H or the aspect ratio (width/height) Ar of enclosure.

Info:

Periodical:

Edited by:

Dongye Sun, Wen-Pei Sung and Ran Chen

Pages:

1187-1190

Citation:

Y. L. Zhang et al., "Heat Transfer Characteristics of the Phase Change Material Microcapsule Slurry in Solid Phase State", Applied Mechanics and Materials, Vols. 71-78, pp. 1187-1190, 2011

Online since:

July 2011

Export:

Price:

$41.00

[1] S. Kakac, W. Aumg and R. Viskanta et al., Natural Convection: Fundamentals and Application, Hemsiphere, Washington, DC, (1985).

[2] Adrian Bejan, Allan D. Kraus et al., Heat transfer handbook, John Wiley & Son, Inc, New York, (2003).

[3] Yinping Zhang, Xianxu Hu and Xin Wang, Theoretical analysis of convective heat transfer enhancement of microencapsulated phase change material slurries, Heat and Mass Transfer 40 (2003) 59-66.

DOI: https://doi.org/10.1007/s00231-003-0410-7

[4] Jian Jin, PeiQing Liu and GuiPing Lin, Numerical simulation of heat transfer of latent functionally thermal fluid in tubes with coaxially inserted cylindrical bars in laminar, Science in China Series E: Technological Sciences 51 (2008) 1232-1241.

DOI: https://doi.org/10.1007/s11431-008-0138-1

[5] Colvin DP; Mulligan JC and Bryant YG, Enhanced heat transport in environmental systems using microencapsulated phase change materials, SAE Tran. 101 (1992) 717–725.

DOI: https://doi.org/10.4271/921224

[6] Yanlai Zhang, Shuangfeng Wang, Zhonghao Rao, Jiefei Xie, Experiment on heat storage characteristic of microencapsulated phase change material slurry, Solar Enengy Materials and Solar Cells, doi: 10. 1016/j. solmat. 2011. 02. 15.

DOI: https://doi.org/10.1016/j.solmat.2011.02.015

[7] Hideo Inaba, Yanlai Zhang and Akihiko Horibe, Transient heat storage characteristics on horizontal rectangular enclosures filled with fluidity slurry of micro-encapsulated phase-change-material dispersed in water. Journal of Thermal Science and Technology 1 (2006).

DOI: https://doi.org/10.1299/jtst.1.66

[8] Goel M; Roy SK; Sengupta S, Laminar forced convection heat transfer in microencapsulated phase change material suspensions. Int J Heat Mass Transfer 37 (1994) 593–604.

DOI: https://doi.org/10.1016/0017-9310(94)90131-7

[9] M. N. A. Hawlader, M. S. Uddin and H. J. Zhu, Encapsulated phase change materials for thermal energy storage: experiment and simulation. Int. J. Energy Res., Vol. 26, (2002) 159-171.

DOI: https://doi.org/10.1002/er.773

[10] H. Inaba, New Challenge in advanced Thermal Energy Transportation Using Functionally Thermal Fluid, International J. Thermal Sciences. Vol. 39 (9-11) (2000), p.991–1003.

DOI: https://doi.org/10.1016/s1290-0729(00)01191-1

[11] A. Shukla, D. Buddhi, R.L. Sawhney, Solar water heaters with phase change material thermal energy storage medium: a review, Renew. Sustain. Energy Rev. 13 (2009), p.2119–2125.

DOI: https://doi.org/10.1016/j.rser.2009.01.024

[12] H. Inaba, C. Dai, A. Horibe, Natural convection heat transfer in enclosures with microemulsion phase change material slurry. Heat and Mass Transfer, vol. 40 (2004)179-189.

DOI: https://doi.org/10.1007/s00231-003-0419-y

[13] H. Inaba, C. Dai, A. Horibe, Numerical simulation of Rayleigh-Bénard convection in non-Newtonian phase-change-material slurry. Int J Therm Sci. 42 (2003) 471-480.

DOI: https://doi.org/10.1016/s1290-0729(02)00048-0

[14] Yin, S.H., T.Y. Wung and K. Chen, Natural convection in an air layer enclosed within rectangular cavities. International Journal of Heat and Mass Transfer, vol. 21 (1978) 307-315.

DOI: https://doi.org/10.1016/0017-9310(78)90123-0