Electrochemical Characteristics of the Rare Earth Compound Coating on 6061 Aluminum Alloy


Article Preview

The composite coatings were prepared on aluminum alloy by anodizing and chemical conversion method. The coatings consisted of a anodic oxide coating and a rare earth conversion coating. The surface morphology and composition of the composite coatings were analyzed by scanning electron microscopy (SEM) and energy dispersive X-rays (EDX). The electrochemical properties of the different samples were researched by Potentiodynamic polarisation and electrochemical impedance spectroscopy in a 3.5-wt.% NaCl solution. The results showed that corrosion current density of the sample with composite coatings was 3.611×10-9 A·cm-2, impedance was 6.107×105 Ω·cm-2. The composite coatings had better corrosion resistance than the sample with anodic oxide film and the aluminum alloy substrate.



Edited by:

Dongye Sun, Wen-Pei Sung and Ran Chen






Y. Q. Wen et al., "Electrochemical Characteristics of the Rare Earth Compound Coating on 6061 Aluminum Alloy", Applied Mechanics and Materials, Vols. 71-78, pp. 2361-2365, 2011

Online since:

July 2011




[1] Y.H. Song, Z.C. Guo, A.L. Li, et al. Current status and development trend of anodic oxidation, coloring and sealing of aluminum and its alloys [J]. Electroplating & Finishing, 2002, 21(6): 27-33 (in chinese).

[2] L.Q. Zhu. Electroplating theory and technology of Functional coating[M]. Beijing: BEIHANG UNIVERSITY PRESS, 2005, 217-245 (in chinese).

[3] D.R. Arnott, N.E. Ryan, B.R.W. Hinton, et al. Auger and XPS studies of cerium corrosion inhibition on 7075 aluminum alloy[J]. Applied Surface Science, 1985, (22-23): 236-251.

DOI: 10.1016/0378-5963(85)90056-x

[4] M. Dabala, L. Armelao, A. Buchberger, et al. Cerium-based conversion layers on aluminum alloys[J]. Applied Surface Science, 2001, 172 (3-4): 312-322.

DOI: 10.1016/s0169-4332(00)00873-4

[5] W.G. Fahrenholtz, M.J. O'Keefe, H.F. Zhou, et al. Characterization of cerium-based conversion coatings for corrosion protection of aluminum alloys[J]. Surface and Coatings Technology, 2002, 155(2-3) : 208-213.

DOI: 10.1016/s0257-8972(02)00062-2

[6] A. Decroly, J. -P. Petitjean. Study of the deposition of cerium oxide by conversion on to aluminium alloys[J]. Surface and Coatings Technology. 2005, 194 (1): 1-9.

DOI: 10.1016/j.surfcoat.2004.05.012

[7] F.H. Scholes, C. Soste, A.E. Hughes, et al. The role of hydrogen peroxide in the deposition of cerium-based conversion coatings[J]. Applied Surface Science, 2006, 253(4): 1770-1780.

DOI: 10.1016/j.apsusc.2006.03.010

[8] M. Bethencourt, F.J. Botana, M.J. Cano, et al. Advanced generation of green conversion coatings for aluminium alloys[J]. Applied Surface Science, 2004, 238 (1-4): 278-281.

DOI: 10.1016/j.apsusc.2004.05.268

[9] M.A. Arenas, J.J. de Damborenea. Growth mechanisms of ceriumlayers on galvanised steel[J]. Electrochimica Acta, 2003, 48: 3693.

DOI: 10.1016/s0013-4686(03)00507-3

[10] P. Campestrini, H. Terryn, A. Hovestad. Formation of a cerium-based conversion coating on AA2024 relationship with the microstructure[J]. Surface and Coatings Technology, 2004, 176(3): 365.

DOI: 10.1016/s0257-8972(03)00743-6

[11] D.R. Arnott, N.E. Ryan, B.R.W. Hinton. Auger and XPS studies of cerium corrosion ion 7075 aluminum alloy[J]. Surface and Coatings Technology, 1984, 22-23(1): 236.

DOI: 10.1016/0378-5963(85)90056-x

[12] M. Bethencourt, F.J. Botana, M.J. Cano. Advanced generation of green conversion coatings for aluminum alloys[J]. Applied Surface Science, 2004, 238(1/4): 278.

DOI: 10.1016/j.apsusc.2004.05.268

[13] M.A. Arenas, A. Conde, J.J. de Damborenea. Cerium: a suitable green corrosion inhibitor for tinplate[J]. Corrosion Science, 2002, 44: 511.

DOI: 10.1016/s0010-938x(01)00053-1

[14] A. Aballe, M. Bethencourt, F.J. Botana. CeCl3 and LaCl3 binary solutions as environment-friendly corrosion inhibitors of AA5083 Al-Mg alloy in NaCl solutions[J]. Journal of Alloys and Compounds, 2001, 323/324: 855.

DOI: 10.1016/s0925-8388(01)01160-4

[15] X.W. Yu, C.N. Cao, Z.M. Yao. Study of double layer rare earth metal conversion coating on aluminum alloy LY12[J]. Corrosion Science, 2001, 36(43): 1283.

DOI: 10.1016/s0010-938x(00)00141-4

[16] A. Bai, P.Y. Chuang, C.C. Hu, The corrosion behavior of Ni–P deposits with high phosphorous contents in brine media[J]. Materials Chemistry and Physics, 2003, 82 (1): 93-100.

DOI: 10.1016/s0254-0584(03)00193-7

In order to see related information, you need to Login.