Finite Element Analysis of High-Type Large Capacity End-Plate Connections


Article Preview

Compared to the traditional configurations, beam-column end-plate connections with two bolt rows located at the external side of the beam tension flange, i.e. high-type large capacity end-plate connections, could stand greater loading. However, seldom research on the static behavior of high-type end-plate connections has been done in China while specification in America has provided corresponding design approaches. In this paper, detailed verified finite element model will be employed to analyze the static behavior of 7 high-type end-plate connections with different configurations. The influence of parameters such as end-plate thickness, bolt layout, end-plate configuration and stiffener geometry has been investigated. The simulation results demonstrate that (1) when the maximum transferred tension force by a single bolt reaches 0.8P, the tension force of the bolts does not satisfy the assumption of linear distribution but depends on the boundary conditions of the bolts; (2) the shear force in the connection is transferred by the contact surface of the end plate and the shear force directly transferred by the bolts is tiny and extremely uneven; (3) considering the effect of the connection configurations, whether the end plate at the compression side is extended or not has little effect on the static behavior of the connection but the geometry of the end-plate stiffener and the distance from the bolt axis to the beam web have great contribution to the initial stiffness of the connection; (4) at ultimate state even the bolts located near the beam axis have significant contribution to the loading capacity of the connection. Then, a model of the bolt transferred tension force distribution has been proposed. What’s more, based on the observation of the stress contour of the tension part of the end plate, a yield line model has been proposed. All these results are important to propose a design approach for the high-type end-plate connection. Introduction



Edited by:

Dongye Sun, Wen-Pei Sung and Ran Chen






G. Shi et al., "Finite Element Analysis of High-Type Large Capacity End-Plate Connections", Applied Mechanics and Materials, Vols. 71-78, pp. 3673-3679, 2011

Online since:

July 2011




In order to see related information, you need to Login.

In order to see related information, you need to Login.