Stator Flux Observer for Induction Motor Based on Prescribed Convergence Law Algorithm


Article Preview

This paper proposes a stator flux estimation method for induction motor based on Prescribed Convergence Law algorithm. A stator flux observer is designed and applied for direct torque control (DTC) of induction motor. The observer tracks stator current and its differential with Prescribed Convergence Law algorithm of second order sliding mode in order to estimate rotor flux, and then estimate stator flux using the relationship between stator flux and rotor flux. This paper takes the differential of estimated flux error as disturbance and divides the MIMO (Multiple Input Multiple Output) observer model into two separate SISO (single input single output) systems, which simplifies the stability analysis. The observer is applied to DTC of induction motor and achieves a good control effect. Simulation experiment results validate the proposed method.



Edited by:

Feng Liu






Y. D. Pan et al., "Stator Flux Observer for Induction Motor Based on Prescribed Convergence Law Algorithm", Applied Mechanics and Materials, Vols. 719-720, pp. 461-469, 2015

Online since:

January 2015




* - Corresponding Author

[1] G. Pellegrino, P. Guglielmi, E. Armando, and R. I. Bojoi, Self-commissioning algorithm for inverter nonlinearity compensation in sensorless induction motor drives, IEEE Transactions on Industry Applications, vol. 46, pp.1416-1424, May. (2010).

DOI: 10.1109/tia.2010.2049554

[2] M. Rodic and K. Jezernik, Speed-sensorless sliding-mode torque control of an induction motor, IEEE Transactions on Industrial Electronics, vol. 49, pp.87-95, Feb. (2002).

DOI: 10.1109/41.982252

[3] Li Hong, Luo Yu, Han Bangcheng and Chen Yanpeng, Voltage integral model for stator flux estimator based on band-pass filter, Electric Machines and Control, vol. 17, pp.8-16, Sep. (2013).

[4] M. Spichartz and A. Steimel, Stator-flux-oriented control with high torque dynamics in the whole speed range for electric vehicles, Emobility-Electrical Power Train, 2010. IEEE, Nov. 2010, pp.1-6, doi: 10. 1109/EMOBILITY. 2010. 5668045.

DOI: 10.1109/emobility.2010.5668045

[5] J. C. Li, L. Y. Xu, and Z. Zhang, An adaptive sliding-mode observer for induction motor sensorless speed control, IEEE Transactions on Industry Applications, vol. 41, pp.1039-1046, Apr. (2005).

DOI: 10.1109/tia.2005.851585

[6] H. Rehman, Elimination of the stator resistance sensitivity and voltage sensor requirement problems for DFO control of an induction Machine, IEEE Transactions on Industrial Electronics, vol. 52, pp.263-269, Feb. (2005).

DOI: 10.1109/tie.2004.841067

[7] Wang Bingyuan and Feng Hui, Stator-current-based MRAS estimator for induction motors, Electric Machines and Control, vol. 17, pp.48-56, Sep. (2013).

[8] M. Barut, S. Bogosyan and M. Gokasan, Speed-sensorless estimation for induction motors using extended Kalman filters, IEEE Transactions on Industrial Electronics, vol. 54, pp.272-280, Feb. (2007).

DOI: 10.1109/tie.2006.885123

[9] M. E. Haque, L. Zhong and M. F. Rahman, A sensorless initial rotor position estimation scheme for a direct torque controlled interior permanent magnet synchronous motor drive, Applied Power Electronics Conference and Exposition, 2001. IEEE, Mar. 2001, pp.89-884.

DOI: 10.1109/apec.2001.912472

[10] M. G. Simões and B. K. Bose, Neural network based estimation of feedback signals for a vector controlled induction motor drive, IEEE Transactions on Industry Applications, vol. 31, pp.620-629, Jun. (1995).

DOI: 10.1109/28.382124

[11] K, D, Young, V. I. Utkin and U. Ozguner, A control engineer's guide to sliding mode control, IEEE Transactions on Control Systems Technology, vol. 7, pp.328-342, May. (1999).

DOI: 10.1109/87.761053

[12] L. Fridman and A. Levant, Higher order sliding modes as a natural phenomenon in control theory, Robust control via variable structure and Lyapunov techniques, 1996, pp.107-133, doi: 10. 1007/BFb0027563.

DOI: 10.1007/bfb0027563

[13] A. Levant, Principles of 2-Sliding Mode Design, Automatica, vol. 43, pp.576-586, Apr. (2007).

DOI: 10.1016/j.automatica.2006.10.008

[14] A. Levant, Sliding Order and Sliding Accuracy in Sliding Mode Control, International Journal of Control, vol. 58, pp.1247-1263, (1993).

DOI: 10.1080/00207179308923053

In order to see related information, you need to Login.