In Situ Soldering Process Technique by Synchrotron X-Ray Imaging

Abstract:

Article Preview

This paper demonstrates the development of an experimental technique of in-situ observation for soldering of Sn-0.7wt%Cu lead-free solder on a Cu substrate which was achieved for the first time by synchrotron X-ray imaging. Reactions between liquid solder and Cu substrate during a soldering process were able to be recorded in real-time. Individual stages of the soldering process consisted of flux activation in removal of Cu oxide, solder melting and contact with the Cu substrate (wetting) and intermetallic compound (IMC) and void formation between the solder and Cu substrate. The technique development which includes experimental setup with calculated optimum beam energy in the range of 20 – 30 keV appears to result in a clear observation of real-time X-ray imaging of the soldering process. This technique provides a key method to understand the mechanism of formation of micro-electronic inter-connects for future electronic packaging applications.

Info:

Periodical:

Edited by:

Mohd Mustafa Al Bakri Abdullah, Zarina Yahya, Liyana Jamaludin, Alida Abdullah and Rafiza Abd Razak

Pages:

508-512

DOI:

10.4028/www.scientific.net/AMM.754-755.508

Citation:

M.A.A. Mohd Salleh et al., "In Situ Soldering Process Technique by Synchrotron X-Ray Imaging", Applied Mechanics and Materials, Vols. 754-755, pp. 508-512, 2015

Online since:

April 2015

Export:

Price:

$38.00

* - Corresponding Author

[1] E. Donnelly, in: Synchrotron Investigation, Australian School Innovation in Science, Technology and Mathematics, The University of Western Australia.

[2] H. Yasuda, T. Nagira, M. Yoshiya, M. Uesugi, N. Nakatsuka, M. Kiire, A. Sugiyama, K. Uesugi, K. Umetani, IOP Conference Series: Materials Science and Engineering, 27 (2012).

DOI: 10.1088/1757-899x/27/1/012084

[3] K. Nogita, H. Yasuda, A. Prasad, S.D. McDonald, T. Nagira, N. Nakatsuka, K. Uesugi, D.H. StJohn, Materials Characterization, 85 (2013) 134-140.

DOI: 10.1016/j.matchar.2013.08.015

[4] H. Yasuda, I. Ohnaka, K. Kawasaki, A. Sugiyama, T. Ohmichi, J. Iwane, K. Umetani, Journal of Crystal Growth, 262 (2004) 645-652.

DOI: 10.1016/j.jcrysgro.2003.09.052

[5] A. Bogno, H. Nguyen-Thi, N. Bergeon, N. Mangelinck-Noël, T. Schenk, B. Billia, E. Boller, J. Baruchel, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268 (2010) 394-398.

DOI: 10.1016/j.nimb.2009.09.011

[6] Y. Chen, A. -A. Bogno, N.M. Xiao, B. Billia, X.H. Kang, H. Nguyen-Thi, X.H. Luo, D.Z. Li, Acta Materialia, 60 (2012) 199-207.

[7] F. -g. Li, Q. Dong, J. Zhang, Y. -b. Dai, Y. -n. Fu, H. -l. Xie, F. -c. Yin, B. -d. Sun, Transactions of Nonferrous Metals Society of China, 24 (2014) 2112-2116.

[8] F. Mao, F. Chen, Q. Han, J. Han, Z. Cao, T. Wang, T. Li, Journal of Alloys and Compounds, 608 (2014) 343-351.

[9] H. Nguyen-Thi, L. Salvo, R.H. Mathiesen, L. Arnberg, B. Billia, M. Suery, G. Reinhart, Comptes Rendus Physique, 13 (2012) 237-245.

DOI: 10.1016/j.crhy.2011.11.010

[10] C.M. Gourlay, K. Nogita, A.K. Dahle, Y. Yamamoto, K. Uesugi, T. Nagira, M. Yoshiya, H. Yasuda, Acta Materialia, 59 (2011) 4043-4054.

DOI: 10.1016/j.actamat.2011.03.028

[11] T. Nagira, C.M. Gourlay, A. Sugiyama, M. Uesugi, Y. Kanzawa, M. Yoshiya, K. Uesugi, K. Umetani, H. Yasuda, Scripta Materialia, 64 (2011) 1129-1132.

DOI: 10.1016/j.scriptamat.2011.03.009

[12] H. Yasuda, I. Ohnaka, S. Fujimoto, N. Takezawa, A. Tsuchiyama, T. Nakano, K. Uesugi, Scripta Materialia, 54 (2006) 527-532.

DOI: 10.1016/j.scriptamat.2005.10.059

[13] L. Qu, N. Zhao, H.J. Zhao, M.L. Huang, H.T. Ma, Scripta Materialia, 72–73 (2014) 43-46.

[14] H.T. Ma, L. Qu, M.L. Huang, L.Y. Gu, N. Zhao, L. Wang, Journal of Alloys and Compounds, 537 (2012) 286-290.

[15] J. Bertheau, P. Bleuet, F. Hodaj, P. Cloetens, N. Martin, J. Charbonnier, N. Hotellier, Microelectronic Engineering, 113 (2014) 123-129.

DOI: 10.1016/j.mee.2013.07.013

[16] K.N. Tu, Solder Joint Technology: Materials, Properties, and Reliability, Springer, (2007).

[17] B. Chao, S. -H. Chae, X. Zhang, K. -H. Lu, J. Im, P.S. Ho, Acta Materialia, 55 (2007) 2805-2814.

[18] M. He, Z. Chen, G. Qi, Acta Materialia, 52 (2004) 2047-(2056).

[19] J.F. Li, S.H. Mannan, M.P. Clode, D.C. Whalley, D.A. Hutt, Acta Materialia, 54 (2006) 2907-2922.

DOI: 10.1016/j.actamat.2006.02.030

[20] M.S. Park, R. Arróyave, Acta Materialia, 58 (2010) 4900-4910.

[21] B. -J. Lee, N.M. Hwang, H.M. Lee, Acta Materialia, 45 (1997) 1867-1874.

[22] M. Schaefer, R. Fournelle, J. Liang, Journal of Electronic Materials, 27 (1998) 1167-1176.

[23] J.L. Glover, C.T. Chantler, Z. Barnea, N.A. Rae, C.Q. Tran, Journal of Physics B: Atomic, Molecular and Optical Physics, 43 (2010) 085001.

[24] B.L. Henke, E.M. Gullikson, J.C. Davis, in: Atomic Data and Nuclear Data Tables, 1993, pp.181-342.

[25] M. -H. Lu, K. -C. Hsieh, Journal of Electronic Materials, 36 (2007) 1448-1454.

In order to see related information, you need to Login.