Feasibility of Bioaugmentation with Iron/Sulfur Oxidizing Acidophiles to Enhance Copper Bioleaching from a Flotation Copper Ore

Abstract:

Article Preview

The feasibility of one strategy of bioaugmentation was assessed to enhance copper extraction from chalcopyrite. Bioaugmentation consisted of the re-addition of one iron/sulfur oxidizing acidophile (Acidithiobacillus caldus, Ferroplasma thermophilum or Leptospirillum ferriphilum) into the early stage (on the 5th day) of the bioleaching system. The strain selection and inoculum concentration of bioaugmentation were separately investigated by comparing changes in the bioleaching performance and leached solid residues. Results indicated that bioaugmentation with three augmented strains synergistically promoted the total microbial growth and increased the cell numbers, and then accelerated the iron/sulfur oxidation, thereby catalytically regenerated the copper leaching agents of Fe3+ and H+ compared to the unamended control. Finally, an enhancement in copper extraction was detected and moreover positively correlated with the introducing cell numbers. Particularly, re-addition of L. ferriphilum on the 5th day showed the best improvement in copper leaching, which remarkably shortened the incubation time (12 days) of almost full copper extraction while only 85.8% of copper was leached after 24 days in the control. Therefore, bioaugmentation could be a useful bio-remedy to improve the bioleaching kinetics and level of copper ore.

Info:

Periodical:

Edited by:

Jinhui Li and Hualong Hu

Pages:

447-457

Citation:

L. J. Zhang et al., "Feasibility of Bioaugmentation with Iron/Sulfur Oxidizing Acidophiles to Enhance Copper Bioleaching from a Flotation Copper Ore", Applied Mechanics and Materials, Vol. 768, pp. 447-457, 2015

Online since:

June 2015

Export:

Price:

$41.00

* - Corresponding Author

[1] C.L. Brierley, J.A. Brierley, Progress in bioleaching: part B: applications of microbial processes by the minerals industries, Appl. Microbiol. Biotechnol. 97 (2013) 7543-7552.

DOI: https://doi.org/10.1007/s00253-013-5095-3

[2] J.A. Brierley, A perspective on developments in biohydrometallurgy, Hydrometallurgy 94 (2008) 2-7.

[3] M.E. Hoque, O.J. Philip, Biotechnological recovery of heavy metals from secondary sources-An overview, Mater. Sci. Eng.: C 31 (2011) 57-66.

[4] T. Rohwerder, T. Gehrke, K. Kinzler, W. Sand, Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation, Appl. Microbiol. Biotechnol. 63 (2003) 239-248.

DOI: https://doi.org/10.1007/s00253-013-4954-2

[5] W. Sand, T. Gehrke, P. Jozsa, (Bio)chemistry of bacterial leaching-direct vs. indirect bioleaching, Hydrometallurgy 59 (2001) 159-175.

DOI: https://doi.org/10.1016/s0304-386x(00)00180-8

[6] H. Watling, The bioleaching of sulphide minerals with emphasis on copper sulphides-A review, Hydrometallurgy 84 (2006) 81-108.

DOI: https://doi.org/10.1016/j.hydromet.2006.05.001

[7] S.O. Rastegar, S.M. Mousavi, S.A. Shojaosadati, Cr and Ni recovery during bioleaching of dewatered metal-plating sludge using Acidithiobacillus ferrooxidans, Bioresour. Technol. 167 (2014) 61-68.

DOI: https://doi.org/10.1016/j.biortech.2014.05.107

[8] K. Murugesan, B. Ravindran, A. Selvam, M.B. Kurade, S. -M. Yu, J.W.C. Wong, Enhanced dewaterability of anaerobically digested sewage sludge using Acidithiobacillus ferrooxidans culture as sludge conditioner, Bioresour. Technol. 169 (2014) 374-379.

DOI: https://doi.org/10.1016/j.biortech.2014.06.057

[9] P. Munoz, J.D. Miller, M. Wadsworth, Reaction mechanism for the acid ferric sulfate leaching of chalcopyrite, Metall. Mater. Trans. B 10 (1979) 149-158.

DOI: https://doi.org/10.1007/bf02652458

[10] R. Hackl, D. Dreisinger, E. Peters, J. King, Passivation of chalcopyrite during oxidative leaching in sulfate media, Hydrometallurgy 39 (1995) 25-48.

DOI: https://doi.org/10.1016/0304-386x(95)00023-a

[11] A. Pinches, F. Al-Jaid, D. Williams, B. Atkinson, Leaching of chalcopyrite concentrates with Thiobacillus ferrooxidans in batch culture, Hydrometallurgy 2 (1976) 87-103.

DOI: https://doi.org/10.1016/0304-386x(76)90020-7

[12] G. Warren, M. Wadsworth, S. El-Raghy, Passive and transpassive anodic behavior of chalcopyrite in acid solutions, Metall. Trans. B 13 (1982) 571-579.

DOI: https://doi.org/10.1007/bf02650014

[13] G. Nazari, D.G. Dixon, D.B. Dreisinger, Enhancing the kinetics of chalcopyrite leaching in the GalvanoxTM process, Hydrometallurgy 105 (2011) 251-258.

DOI: https://doi.org/10.1016/j.hydromet.2010.10.013

[14] C.L. Brierley, Biohydrometallurgical prospects, Hydrometallurgy 104 (2010) 324-328.

DOI: https://doi.org/10.1016/j.hydromet.2010.03.021

[15] A. Ahmadi, M. Schaffie, J. Petersen, A. Schippers, M. Ranjbar, Conventional and electrochemical bioleaching of chalcopyrite concentrates by moderately thermophilic bacteria at high pulp density, Hydrometallurgy, 106 (2011) 84-92.

DOI: https://doi.org/10.1016/j.hydromet.2010.12.007

[16] D.B. Johnson, N. Okibe, K. Wakeman, L. Yajie, Effect of temperature on the bioleaching of chalcopyrite concentrates containing different concentrations of silver, Hydrometallurgy 94 (2008) 42-47.

DOI: https://doi.org/10.1016/j.hydromet.2008.06.005

[17] S. Feng, H. Yang, X. Zhan, W. Wang, Novel integration strategy for enhancing chalcopyrite bioleaching by Acidithiobacillus sp. in a 7-L fermenter, Bioresour. Technol. 161 (2014) 371-378.

[18] A. Sandström, A. Shchukarev, J. Paul, XPS characterisation of chalcopyrite chemically and bio-leached at high and low redox potential, Miner. Eng. 18 (2005) 505-515.

DOI: https://doi.org/10.1016/j.mineng.2004.08.004

[19] A. Ahmadi, M. Schaffie, Z. Manafi, M. Ranjbar, Electrochemical bioleaching of high grade chalcopyrite flotation concentrates in a stirred bioreactor, Hydrometallurgy 104 (2010) 99-105.

DOI: https://doi.org/10.1016/j.hydromet.2010.05.001

[20] H.B. Zhou, W.M. Zeng, Z.F. Yang, Y.J. Xie, G.Z. Qiu, Bioleaching of chalcopyrite concentrate by a moderately thermophilic culture in a stirred tank reactor, Bioresour. Technol. 100 (2009) 515-520.

DOI: https://doi.org/10.1016/j.biortech.2008.06.033

[21] Y. Wang, W. Zeng, Z. Chen, L. Su, L. Zhang, L. Wan, G. Qiu, X. Chen, H. Zhou, Bioleaching of chalcopyrite by a moderately thermophilic culture at different conditions and community dynamics of planktonic and attached populations, Hydrometallurgy 147-148 (2014).

DOI: https://doi.org/10.1016/j.hydromet.2014.04.013

[22] S. El Fantroussi, S.N. Agathos, Is bioaugmentation a feasible strategy for pollutant removal and site remediation?, Curr. Opin. Microbiol. 8 (2005) 268-275.

DOI: https://doi.org/10.1016/j.mib.2005.04.011

[23] L. Iasur-Kruh, Y. Hadar, D. Minz, Isolation and bioaugmentation of an estradiol-degrading bacterium and its integration into a mature biofilm, Appl. Environ. Microbiol. 77 (2011) 3734-3740.

DOI: https://doi.org/10.1128/aem.00691-11

[24] I.A. Fotidis, D. Karakashev, I. Angelidaki, Bioaugmentation with an acetate-oxidising consortium as a tool to tackle ammonia inhibition of anaerobic digestion, Bioresour. Technol. 146 (2013) 57-62.

DOI: https://doi.org/10.1016/j.biortech.2013.07.041

[25] F.M. Bento, F.A.O. Camargo, B.C. Okeke, W.T. Frankenberger, Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation, Bioresour. Technol. 96 (2005) 1049-1055.

DOI: https://doi.org/10.1016/j.biortech.2004.09.008

[26] A. Moran, A. Müller, M. Manzano, B. Gonzalez, Simazine treatment history determines a significant herbicide degradation potential in soils that is not improved by bioaugmentation with Pseudomonas sp. ADP, J. Appl. Microbiol. 101 (2006) 26-35.

DOI: https://doi.org/10.1111/j.1365-2672.2006.02990.x

[27] S. Rousseaux, A. Hartmann, B. Lagacherie, S. Piutti, F. Andreux, G. Soulas, Inoculation of an atrazine-degrading strain, Chelatobacter heintzii Cit1, in four different soils: effects of different inoculum densities, Chemosphere 51 (2003) 569-576.

DOI: https://doi.org/10.1016/s0045-6535(02)00810-x

[28] W. Zeng, G. Qiu, H. Zhou, J. Peng, M. Chen, S.N. Tan, W. Chao, X. Liu, Y. Zhang, Community structure and dynamics of the free and attached microorganisms during moderately thermophilic bioleaching of chalcopyrite concentrate, Bioresour. Technol. 101 (2010).

DOI: https://doi.org/10.1016/j.biortech.2010.04.003

[29] N. Okibe, M. Gericke, K.B. Hallberg, D.B. Johnson, Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation, Appl. Environ. Microbiol. 69 (2003) 1936-(1943).

DOI: https://doi.org/10.1128/aem.69.4.1936-1943.2003

[30] D. Johnson, Biodiversity and interactions of acidophiles: Key to understanding and optimizing microbial processing of ores and concentrates, Trans. Nonferrous Met. Soc. China 18 (2008) 1367-1373.

DOI: https://doi.org/10.1016/s1003-6326(09)60010-8

[31] G.Z. Qiu, B. Fu, H.B. Zhou, X. Liu, J. Gao, F.F. Liu, X.H. Chen, Isolation of a strain of Acidithiobacillus caldus and its role in bioleaching of chalcopyrite, World J Microbiol. Biotechnol. 23 (2007) 1217-1225.

DOI: https://doi.org/10.1007/s11274-007-9350-6

[32] J. Gao, C.G. Zhang, X.L. Wu, H.H. Wang, G.Z. Qiu, Isolation and identification of a strain of Leptospirillum ferriphilum from an extreme acid mine drainage site, Ann. Microbiol., 57 (2007) 171-176.

DOI: https://doi.org/10.1007/bf03175203

[33] H. Zhou, R. Zhang, P. Hu, W. Zeng, Y. Xie, C. Wu, G. Qiu, Isolation and characterization of Ferroplasma thermophilum sp. nov., a novel extremely acidophilic, moderately thermophilic archaeon and its role in bioleaching of chalcopyrite, J. Appl. Microbiol. 105 (2008).

DOI: https://doi.org/10.1111/j.1365-2672.2008.03807.x

[34] Y. Wang, L. Su, L. Zhang, W. Zeng, J. Wu, L. Wan, G. Qiu, X. Chen, H. Zhou, Bioleaching of chalcopyrite by defined mixed moderately thermophilic consortium including a marine acidophilic halotolerant bacterium, Bioresour. Technol. 121(2012).

DOI: https://doi.org/10.1016/j.biortech.2012.06.114

[35] K.A. Third, R. Cord-Ruwisch, H.R. Watling, The role of iron-oxidizing bacteria in stimulation or inhibition of chalcopyrite bioleaching, Hydrometallurgy 57 (2000) 225–233.

DOI: https://doi.org/10.1016/s0304-386x(00)00115-8

[36] A.I. Vogel, A text-book of quantitative inorganic analysis, fourth ed. Longman, London and New YorK, (1953).

[37] Å. Kolmert, P. Wikström, K.B. Hallberg, A fast and simple turbidimetric method for the determination of sulfate in sulfate-reducing bacterial cultures, J. Microbiol. Methods 41 (2000) 179-184.

DOI: https://doi.org/10.1016/s0167-7012(00)00154-8

[38] C.M. Zammit, L.A. Mutch, H.R. Watling, E.L.J. Watkin, The recovery of nucleic acid from biomining and acid mine drainage microorganisms, Hydrometallurgy 108 (2011) 87-92.

DOI: https://doi.org/10.1016/j.hydromet.2011.03.002

[39] G. Rossi, Biohydrometallurgy, McGraw-hill, (1990).

[40] N. Okibe, D.B. Johnson, Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH‐controlled bioreactors: Significance of microbial interactions, Biotechnol. Bioeng. 87 (2004) 574-583.

DOI: https://doi.org/10.1002/bit.20138

[41] M. Dopson, E.B. Lindstrom, Potential role of Thiobacillus caldus in arsenopyrite bioleaching, Appl. Environ. Microbiol. 65 (1999) 36-40.

[42] I. Ñancucheo, D.B. Johnson, Production of glycolic acid by chemolithotrophic iron-and sulfur-oxidizing bacteria and its role in delineating and sustaining acidophilic sulfide mineral-oxidizing consortia, Appl. Environ. Microbiol. 76 (2010).

DOI: https://doi.org/10.1128/aem.01832-09

[43] L. Zhang, J. Wu, Y. Wang, L. Wan, F. Mao, W. Zhang, X. Chen, H. Zhou, Influence of bioaugmentation with Ferroplasma thermophilum on chalcopyrite bioleaching and microbial community structure, Hydrometallurgy 146 (2014) 15-23.

DOI: https://doi.org/10.1016/j.hydromet.2014.02.013

[44] T. Das, S. Ayyappan, G. Chaudhury, Factors affecting bioleaching kinetics of sulfide ores using acidophilic micro-organisms, BioMetals 12 (1999) 1-10.