[1]
C.L. Brierley, J.A. Brierley, Progress in bioleaching: part B: applications of microbial processes by the minerals industries, Appl. Microbiol. Biotechnol. 97 (2013) 7543-7552.
DOI: https://doi.org/10.1007/s00253-013-5095-3
[2]
J.A. Brierley, A perspective on developments in biohydrometallurgy, Hydrometallurgy 94 (2008) 2-7.
[3]
M.E. Hoque, O.J. Philip, Biotechnological recovery of heavy metals from secondary sources-An overview, Mater. Sci. Eng.: C 31 (2011) 57-66.
[4]
T. Rohwerder, T. Gehrke, K. Kinzler, W. Sand, Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation, Appl. Microbiol. Biotechnol. 63 (2003) 239-248.
DOI: https://doi.org/10.1007/s00253-013-4954-2
[5]
W. Sand, T. Gehrke, P. Jozsa, (Bio)chemistry of bacterial leaching-direct vs. indirect bioleaching, Hydrometallurgy 59 (2001) 159-175.
DOI: https://doi.org/10.1016/s0304-386x(00)00180-8
[6]
H. Watling, The bioleaching of sulphide minerals with emphasis on copper sulphides-A review, Hydrometallurgy 84 (2006) 81-108.
DOI: https://doi.org/10.1016/j.hydromet.2006.05.001
[7]
S.O. Rastegar, S.M. Mousavi, S.A. Shojaosadati, Cr and Ni recovery during bioleaching of dewatered metal-plating sludge using Acidithiobacillus ferrooxidans, Bioresour. Technol. 167 (2014) 61-68.
DOI: https://doi.org/10.1016/j.biortech.2014.05.107
[8]
K. Murugesan, B. Ravindran, A. Selvam, M.B. Kurade, S. -M. Yu, J.W.C. Wong, Enhanced dewaterability of anaerobically digested sewage sludge using Acidithiobacillus ferrooxidans culture as sludge conditioner, Bioresour. Technol. 169 (2014) 374-379.
DOI: https://doi.org/10.1016/j.biortech.2014.06.057
[9]
P. Munoz, J.D. Miller, M. Wadsworth, Reaction mechanism for the acid ferric sulfate leaching of chalcopyrite, Metall. Mater. Trans. B 10 (1979) 149-158.
DOI: https://doi.org/10.1007/bf02652458
[10]
R. Hackl, D. Dreisinger, E. Peters, J. King, Passivation of chalcopyrite during oxidative leaching in sulfate media, Hydrometallurgy 39 (1995) 25-48.
DOI: https://doi.org/10.1016/0304-386x(95)00023-a
[11]
A. Pinches, F. Al-Jaid, D. Williams, B. Atkinson, Leaching of chalcopyrite concentrates with Thiobacillus ferrooxidans in batch culture, Hydrometallurgy 2 (1976) 87-103.
DOI: https://doi.org/10.1016/0304-386x(76)90020-7
[12]
G. Warren, M. Wadsworth, S. El-Raghy, Passive and transpassive anodic behavior of chalcopyrite in acid solutions, Metall. Trans. B 13 (1982) 571-579.
DOI: https://doi.org/10.1007/bf02650014
[13]
G. Nazari, D.G. Dixon, D.B. Dreisinger, Enhancing the kinetics of chalcopyrite leaching in the GalvanoxTM process, Hydrometallurgy 105 (2011) 251-258.
DOI: https://doi.org/10.1016/j.hydromet.2010.10.013
[14]
C.L. Brierley, Biohydrometallurgical prospects, Hydrometallurgy 104 (2010) 324-328.
DOI: https://doi.org/10.1016/j.hydromet.2010.03.021
[15]
A. Ahmadi, M. Schaffie, J. Petersen, A. Schippers, M. Ranjbar, Conventional and electrochemical bioleaching of chalcopyrite concentrates by moderately thermophilic bacteria at high pulp density, Hydrometallurgy, 106 (2011) 84-92.
DOI: https://doi.org/10.1016/j.hydromet.2010.12.007
[16]
D.B. Johnson, N. Okibe, K. Wakeman, L. Yajie, Effect of temperature on the bioleaching of chalcopyrite concentrates containing different concentrations of silver, Hydrometallurgy 94 (2008) 42-47.
DOI: https://doi.org/10.1016/j.hydromet.2008.06.005
[17]
S. Feng, H. Yang, X. Zhan, W. Wang, Novel integration strategy for enhancing chalcopyrite bioleaching by Acidithiobacillus sp. in a 7-L fermenter, Bioresour. Technol. 161 (2014) 371-378.
[18]
A. Sandström, A. Shchukarev, J. Paul, XPS characterisation of chalcopyrite chemically and bio-leached at high and low redox potential, Miner. Eng. 18 (2005) 505-515.
DOI: https://doi.org/10.1016/j.mineng.2004.08.004
[19]
A. Ahmadi, M. Schaffie, Z. Manafi, M. Ranjbar, Electrochemical bioleaching of high grade chalcopyrite flotation concentrates in a stirred bioreactor, Hydrometallurgy 104 (2010) 99-105.
DOI: https://doi.org/10.1016/j.hydromet.2010.05.001
[20]
H.B. Zhou, W.M. Zeng, Z.F. Yang, Y.J. Xie, G.Z. Qiu, Bioleaching of chalcopyrite concentrate by a moderately thermophilic culture in a stirred tank reactor, Bioresour. Technol. 100 (2009) 515-520.
DOI: https://doi.org/10.1016/j.biortech.2008.06.033
[21]
Y. Wang, W. Zeng, Z. Chen, L. Su, L. Zhang, L. Wan, G. Qiu, X. Chen, H. Zhou, Bioleaching of chalcopyrite by a moderately thermophilic culture at different conditions and community dynamics of planktonic and attached populations, Hydrometallurgy 147-148 (2014).
DOI: https://doi.org/10.1016/j.hydromet.2014.04.013
[22]
S. El Fantroussi, S.N. Agathos, Is bioaugmentation a feasible strategy for pollutant removal and site remediation?, Curr. Opin. Microbiol. 8 (2005) 268-275.
DOI: https://doi.org/10.1016/j.mib.2005.04.011
[23]
L. Iasur-Kruh, Y. Hadar, D. Minz, Isolation and bioaugmentation of an estradiol-degrading bacterium and its integration into a mature biofilm, Appl. Environ. Microbiol. 77 (2011) 3734-3740.
DOI: https://doi.org/10.1128/aem.00691-11
[24]
I.A. Fotidis, D. Karakashev, I. Angelidaki, Bioaugmentation with an acetate-oxidising consortium as a tool to tackle ammonia inhibition of anaerobic digestion, Bioresour. Technol. 146 (2013) 57-62.
DOI: https://doi.org/10.1016/j.biortech.2013.07.041
[25]
F.M. Bento, F.A.O. Camargo, B.C. Okeke, W.T. Frankenberger, Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation, Bioresour. Technol. 96 (2005) 1049-1055.
DOI: https://doi.org/10.1016/j.biortech.2004.09.008
[26]
A. Moran, A. Müller, M. Manzano, B. Gonzalez, Simazine treatment history determines a significant herbicide degradation potential in soils that is not improved by bioaugmentation with Pseudomonas sp. ADP, J. Appl. Microbiol. 101 (2006) 26-35.
DOI: https://doi.org/10.1111/j.1365-2672.2006.02990.x
[27]
S. Rousseaux, A. Hartmann, B. Lagacherie, S. Piutti, F. Andreux, G. Soulas, Inoculation of an atrazine-degrading strain, Chelatobacter heintzii Cit1, in four different soils: effects of different inoculum densities, Chemosphere 51 (2003) 569-576.
DOI: https://doi.org/10.1016/s0045-6535(02)00810-x
[28]
W. Zeng, G. Qiu, H. Zhou, J. Peng, M. Chen, S.N. Tan, W. Chao, X. Liu, Y. Zhang, Community structure and dynamics of the free and attached microorganisms during moderately thermophilic bioleaching of chalcopyrite concentrate, Bioresour. Technol. 101 (2010).
DOI: https://doi.org/10.1016/j.biortech.2010.04.003
[29]
N. Okibe, M. Gericke, K.B. Hallberg, D.B. Johnson, Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation, Appl. Environ. Microbiol. 69 (2003) 1936-(1943).
DOI: https://doi.org/10.1128/aem.69.4.1936-1943.2003
[30]
D. Johnson, Biodiversity and interactions of acidophiles: Key to understanding and optimizing microbial processing of ores and concentrates, Trans. Nonferrous Met. Soc. China 18 (2008) 1367-1373.
DOI: https://doi.org/10.1016/s1003-6326(09)60010-8
[31]
G.Z. Qiu, B. Fu, H.B. Zhou, X. Liu, J. Gao, F.F. Liu, X.H. Chen, Isolation of a strain of Acidithiobacillus caldus and its role in bioleaching of chalcopyrite, World J Microbiol. Biotechnol. 23 (2007) 1217-1225.
DOI: https://doi.org/10.1007/s11274-007-9350-6
[32]
J. Gao, C.G. Zhang, X.L. Wu, H.H. Wang, G.Z. Qiu, Isolation and identification of a strain of Leptospirillum ferriphilum from an extreme acid mine drainage site, Ann. Microbiol., 57 (2007) 171-176.
DOI: https://doi.org/10.1007/bf03175203
[33]
H. Zhou, R. Zhang, P. Hu, W. Zeng, Y. Xie, C. Wu, G. Qiu, Isolation and characterization of Ferroplasma thermophilum sp. nov., a novel extremely acidophilic, moderately thermophilic archaeon and its role in bioleaching of chalcopyrite, J. Appl. Microbiol. 105 (2008).
DOI: https://doi.org/10.1111/j.1365-2672.2008.03807.x
[34]
Y. Wang, L. Su, L. Zhang, W. Zeng, J. Wu, L. Wan, G. Qiu, X. Chen, H. Zhou, Bioleaching of chalcopyrite by defined mixed moderately thermophilic consortium including a marine acidophilic halotolerant bacterium, Bioresour. Technol. 121(2012).
DOI: https://doi.org/10.1016/j.biortech.2012.06.114
[35]
K.A. Third, R. Cord-Ruwisch, H.R. Watling, The role of iron-oxidizing bacteria in stimulation or inhibition of chalcopyrite bioleaching, Hydrometallurgy 57 (2000) 225–233.
DOI: https://doi.org/10.1016/s0304-386x(00)00115-8
[36]
A.I. Vogel, A text-book of quantitative inorganic analysis, fourth ed. Longman, London and New YorK, (1953).
[37]
Å. Kolmert, P. Wikström, K.B. Hallberg, A fast and simple turbidimetric method for the determination of sulfate in sulfate-reducing bacterial cultures, J. Microbiol. Methods 41 (2000) 179-184.
DOI: https://doi.org/10.1016/s0167-7012(00)00154-8
[38]
C.M. Zammit, L.A. Mutch, H.R. Watling, E.L.J. Watkin, The recovery of nucleic acid from biomining and acid mine drainage microorganisms, Hydrometallurgy 108 (2011) 87-92.
DOI: https://doi.org/10.1016/j.hydromet.2011.03.002
[39]
G. Rossi, Biohydrometallurgy, McGraw-hill, (1990).
[40]
N. Okibe, D.B. Johnson, Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH‐controlled bioreactors: Significance of microbial interactions, Biotechnol. Bioeng. 87 (2004) 574-583.
DOI: https://doi.org/10.1002/bit.20138
[41]
M. Dopson, E.B. Lindstrom, Potential role of Thiobacillus caldus in arsenopyrite bioleaching, Appl. Environ. Microbiol. 65 (1999) 36-40.
[42]
I. Ñancucheo, D.B. Johnson, Production of glycolic acid by chemolithotrophic iron-and sulfur-oxidizing bacteria and its role in delineating and sustaining acidophilic sulfide mineral-oxidizing consortia, Appl. Environ. Microbiol. 76 (2010).
DOI: https://doi.org/10.1128/aem.01832-09
[43]
L. Zhang, J. Wu, Y. Wang, L. Wan, F. Mao, W. Zhang, X. Chen, H. Zhou, Influence of bioaugmentation with Ferroplasma thermophilum on chalcopyrite bioleaching and microbial community structure, Hydrometallurgy 146 (2014) 15-23.
DOI: https://doi.org/10.1016/j.hydromet.2014.02.013
[44]
T. Das, S. Ayyappan, G. Chaudhury, Factors affecting bioleaching kinetics of sulfide ores using acidophilic micro-organisms, BioMetals 12 (1999) 1-10.