Synthesis and Characterization of Nanocrystalline Diamond Films Deposited by Microwave Plasma Chemical Vapour Deposition


Article Preview

Nanocrystalline diamond films have been synthesized by microwave plasma enhanced chemical vapour deposition using H2/CH4 as the reactant gas. Nanocrystalline diamond thin films with surface roughness of 11.8 nm were obtained on silicon substrates. The nanocrystallinity, surface roughness and hardness were characterized by the Raman spectroscopy, X-ray diffraction (XRD), atomic force microscopy and Nano Indentation, respectively. The Raman spectra of the films exhibit a band near 1145 cm-1 and XRD patterns indicate the presence of nanocrystalline diamond. The hardness value of individual test point is approximately 102 GPa and the average hardness of thin film could reach 86 GPa.



Edited by:

Yiyi Zhouzhou and Qi Luo




W. L. Zhou et al., "Synthesis and Characterization of Nanocrystalline Diamond Films Deposited by Microwave Plasma Chemical Vapour Deposition", Applied Mechanics and Materials, Vol. 79, pp. 187-191, 2011

Online since:

July 2011




[1] S.J. Askari and F. Lu: Vacuum Vol. 82(2008), p.673.

[2] C.J. Tang, A.J. Neves, J. Gracio, A.J.S. Fernandes, M.C. Carmo and J. Cryst: Growth Vol. 310(2008), p.261.

[3] I.I. Vlasov, E. Goovaerts, V.G. Ralchenko, V.I. Konov, A.V. Khomich and M.V. Kanzyuba: Diam. Relat. Mater Vol. 16 (2007), p. (2074).

[4] W.S. Huang, D.T. Tran, J. Asmussen, T.A. Grotjohn and D. Reinhard: Diam. Relat. Mater Vol. 15 (2006), p.341.

[5] C. Popov, W. Kulisch, S. Bliznakov, B. Mednikarov, G. Spasov, J. Pirov, M. Jelinek, T. Kocourek and J. Zemek: Appl. Phys. A Vol. 89(2007), p.209.


[6] R.S. Sussmann, J.R. Brandon, G.A. Scarsbrook, C.G. Sweeney, T.J. Valentine, A.J. Whitehead and C.J.H. Wort: Diam. Relat. Mater Vol 3(1994), p.303.

[7] N.V. Novikov, S.N. Dub, V.I. Malnev and V.V. Beskrovanov: Diam. Relat. Mater Vol. 3(1994), p.198.

[8] S.J. Bull, P.R. Chalker, C. Johnson and C.V. Cooper: Diam. Relat. Mater Vol. 4(1994), p.43.

[9] K.E. Spear and J. Am. Ceram: Soc Vol. 72 (2) (1989), p.171.

[10] Hasegawa S, Watanabe S, Inokuma T and Kurata Y: J. Appl. Phys Vol. 77(1995), p. (1938).

[11] D.S. Knight and W.B. White: Proc. SPIE Vol. 144(1989), p.1055.

[12] S. Prawer, K.W. Nugent, Y. Lifshitz, G.D. Lempert, E. Grossman, J. Kulik, I. Avigal, and R. Kalish: Diam. Relat. Mater Vol. 5(1996), p.433.

[13] C. Casiraghi, F. Piazza, A.C. Ferrari, D. Grambole and J. Robertson: Diam. Relat. Mater Vol. 14(2005), p.1098.

[14] R. Pfeiffer, H. Kauzmany, P. Knoll, S. Bokova, N. Salk and B. Gunther: Diam. Relat. Mater Vol. 12(2003), p.268.

[15] Y.K. Liu, C. Liu, Y. Chen, Y. Tzeng, P.L. Tso and I.N. Lin, Diam. Relat. Mater Vol. 13(2004), p.671.

[16] V. Paillard, P. Mélinon, V. Dupuis, A. Perez, J. P. Perez, G. Guiraud and J. Fornazero: Phys. Rev. B Vol. 49 (1994), p.11433.


[17] N. Wada and S.A. Solin: Physica B Vol. 105(1981), p.353.

[18] C.P. Beetz and J. Mater: Res Vol. 5(1990), p.2555.

[19] L. De Fazio, S. Syngellakis, R.J.K. Wood, F.M. Fugiuele, G. Sciume´: Diam. Relat. Mater Vol. 10(2001), p.765.

[20] W.C. Oliver and G.M. Pharr: J. Mater. Res Vol. 7(1992), p.1562.

[21] S. J. Vepfek: J. Vacuum Sci. & Technol. A Vol. 17(5)(1999), p.2401.

[22] N. Savvides and T.J. Bell: J. Appl. Phys Vol. 72(1992), pp.2791-2796.